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Lecture 8 The Continuum Limit
Seribe: E.A. van Nierop

(Division of Engineering and Applied Sciences, Harvard)

March 1%, 2005

In the previous lecture, we used the saddle-point method to derive a uniform ly valid asymptotic
approximation {or the position of the Bernoulli randem walk after many steps. In the first part
of this lecture, we discuss how this solution can be applied to derive the limiting distribution of
percentile ordey statistics, which arises, for example, when interpreting test scores or pricing Internet
bandwidth. This was a question on Problem Set 2, so the reader is referred to the solutions available
online for a detailed discussion.

In the second part of the lecture, we begin our analysis of the continuum Bmii of a random walk.
In the first lecture, we saw how the continuons diffusion equation could be derived from a (il‘a(l(‘fv
random walk., We then investigated the beliaviour of the waller position Py for In

employed such methods as ihe Gram-Charlier expansion and the swthod ~f ste B T

better understand what goes on in the Hail’ of the distribution P wiry, Today, we v v L

first leeture, and find out how one can jump’ from a discrete walk 1o o continuous one more formally.

"

1 Kramers-Moyall Expansion

Recall Bachelier's equation from Lecture #2. That is for a random walk with identical, indepently
digtributed (1TD) steps, we have

o
o) = / ple — &Y Py (), (1)
W TR
which is also the simplest expression for a Markov chain (see lecture #2).

Proceeding formally to derive the continuum limit (N - oc), we introduce p{a, ) as the continuum
approximation of Fy(r), Le. plz, N7) = Py(x) where 7 is the time between steps. Note that p(x, ¢}
15 §(*hno€ ! such th at 1t is differentiable in x4, We now seek a PDE for p(x,4) (where 1 % 7), and
if 0% = {r?) = [ 2 pla)de, we consider also {3} ~ a?N, such that Py () varies on length scales
Lo,

This implies that as N — oo, pla — &) is “localized” for jo ~ 2/ = O{ {o) while P‘»(r’) ~ ol |
varies slowly at this scale. Hence, we Taylor expav! Pyls’ in Boebeliors agis’ s oy e

= - g;)
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MO
Pente) = [ po)Pute~yay, 2)
~ (=y)" d" Py (x) :
_ e ‘ 3
/m ff(y)n:Z:D R (3)
— 1y ad*Pulr .
- Z( 1} My, X (J), {4}
7l dr?
770
(— I) d" Py (x) -
= () + HZ] My, T (5)
where the moments, m,,, are defined as usual (m,, = Jx"p(x)dr) and they are assumed to exist.

Note that in the last step we use mg = 1 which is always true. Bringing Pwx{z) 1o the other side
and dividing hy 7 gives

b

Prnap(e) — Py(a) {1 P {ur) ,
AT i 7 - 2
. L = L( 1 Dy T P, (6}
pras |
where [, = 22 Note that the lefi-hand-side now strongly resembles a time derivative of Puylx).

Following through with that thought, and miroducing plr, ) into the equations we get:

&p L d"p

A R : '

ot Z.;( o Jan (7)
L Ao Fp & p .

= P : &
Dy— 15 i)>) — 1 el (&)

Often, as in Risken’s recommended book The Fokker- Plinck Equation, Eqnation [8) is referred to
“Kramers-Moyall” expansion. However, this should not strictly be interpreied as | smptotic
expansion, since errors are introduced by the first-order continuons time derivative on %hv mh hand
side, Note that no terms have been ‘thrown away’ on the right hand i side, yet all higher-order time
derivatives on the left have disappeared. Also, we should have known something fishy was going on
since eq.(8) uses the momenis rather than the cumulants which we know from earlier lectures to
be the more important parameters.
As we shall see, this form of the Kramers-Moval] expansion is really only valid at leading order in
the limit of infinitessimal steps (discussed below and by Risken), where only the first two terms
Hll]\”«p

= Y :2 ((})
which is a linear advection-diffusion equation, L]w. simplest case of the “Fokker-Planck ecustion”
(discussed later in the class).

2 Continuum Derivation of the Central Limit Theorem

We will now systematically correct the hmm(‘z‘#\hwi] expansion and study the scaling of its
terms. We will focus on the long-time (or many step, N 2 1) limit, where we will see that the PDF
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spreads out and varies slowly in time. Thus, we consides Taylor expansion of the smocth continnna
imterpolant, p(, i), satisfving Py(z) = p(z, N+), around ¢t = N+

Pyial@) = Pylzy  dp  78% 12% 4 (10)
T ot 20 3tals T
Combining this with eq.(8) yields a modified expansion with high order derivatives in both time

and space:
N

C')p ('_'}ﬁp 1 oo - (f)ﬂp
B S o = 2 ) D 1
i + 1727 arme ql nzzl( D YA {] )

This is the complete (formal) partial differential equation (PDE) equivalent to Bachelier’s equation.

Scaling analysis:  To obtain and accurate asymptotic approximation for the mit N -— o,
we non-dimensionalize our variables by choosing a some typical length-scale L, which will be self-
consistently {and uniguely) defined later in the analysis, Thus, we define 7 = z/L, T = N7 and
t=1/T, and p = p/L and obtain dimensionless PIE:

I IR ) o

Fip o= 1 777 lang — Dy amp

o g e s e A (“—} ?!__“T_ (12}
T in Tr wb o >¥4 L fggn T

youd frE=]
ap i ! a’i(s . Dwveap ]):W“dp _ DyNr (ﬁp (13)
dt - A= Nuolnt gpn L a5 L2 a2 L3 a3 *

g N 35 maN 325 ) o
L dx 202 Ot 3L o0

Now, we re-seale 2 1o accommodate the *drift’ of the random walker using ¥ = & — 11}-3’_1 where

my N/ L s the drift velocity, We also define p(7, 1) = #(2,1), so that

Ap do 8¢ d:  de N dé X
"‘“f: = ‘,."?““:“ "fr*""“:"“"*]——"r (16)
at oF dror o L 2z o

ey A . Do 07, (17
—— = TR T e e e e | e | f
at? Ai2 Dzt at - DE o )

LN n oY v R
3¢ s N 5 N, .
— 2l ERYQR AR Rk (1)

e Loaior L7 ax
a9 )
FET EUN (19)

(20
Henee, the modified Kramers-Moyall expansion becomes:

it L 8z

da m N do [] Pé my B ‘ 77':?;\" 32@5] [ 1 r'ﬂggbE }‘} _

N art L iz 91z 032 3tNT g

oo D, .o,
N ¢ maN 3¢ magN g

Lodx 212 gz 31LY g3
Note that in this equation the fivst derivative 8¢9 drops out which of cowiee « 7 R

of introducing 2. Remember that a proper choice for L will ensure that Y enisns, o
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up as N — oo and integrates 1o 1. We now consider a dominant balance of eq.{21) noting that
the first term on the left hand side must be included since & is known to evolve in time. It is then
consistent to keep terms of order N/L? on the right hand side. To demonstrate this, consider what
would happen il we decided 1o make the dominant balance with terms of order N/L3... such that
.~ N3 and terms of order N/L? ~ N9 which blows up as N -+ oo, Thus, we are led to the
first-order approximation as N — ~¢ and with 5 = O(1):

do  (mg —miIN ¢ _ 18% (22)
ot 212 322 29z -

So we are natwrally led 1o choose L = o/N where 62 = mq — rn? is the variance as usual /
expected. Specifically, L does not depend on ms which the unmodified Kramers-Moyall expansion
claims. This 15 essentially a continuum proof of the Central Limit Theoremn. After all, we know
how to solve the diffusion equation given an initial peak distribution (2,0} = §(), namely

- 1 =4
HED = T 23
2.1, N (23)
Pylzy = w—«lm————z-?'

Vina?

where the scaling has been put back into the final expression for Py(z) and { = 1, l.e. we are ‘in’
the central region. A note on the validity of the continuum Hmif ... contimwm diffusion tmplies
that there is a finite (albeit very small} probability of finding the random walker af some enormons

distance from its” starting peint for any time ¢ = 0 + ¢,

In the next lecture, we will show that the higher-order terms in the PDE of the maodified Kramers-
Maoyall expansion reproduce the Gram-Charlier expansion of the discrete PDF at all orders, showing
that the continmm Hmit provides a systematic approximation of the “central region”.



