Regular Perturbations (Algebraic)

Let \(f : \mathbb{R} \times I \to \mathbb{R}, \varepsilon \in I \). Seek a soln in \(x \) of

(1) \[f(x, \varepsilon) = 0 \quad x \in \mathbb{R} \]

of the form

(2) \[x = x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \cdots \]

The expansion (2) is said to be regular in \(\varepsilon \).

Eqn (2) is an assumption that the solution \(x(\varepsilon) \) is smooth in \(\varepsilon \) and as a consequence has a Taylor series expansion, i.e.,

\[x(\varepsilon) = x(0) + \varepsilon x'(0) + \frac{1}{2} \varepsilon^2 x''(0) + \cdots \]

whether (2) is a valid assumption depends on \(f \).

One theorem addressing this: is the Implicit Function Thm.

Theorem

Let \(f : \mathbb{R} \times I \to \mathbb{R} \) and assume \(f \) and all its partial derivatives are smooth. Then if

(a) \[f(\bar{x}, 0) = 0 \]

(b) \[f_x(\bar{x}, 0) \neq 0 \]

then \(\exists \) a smooth fn \(x(\varepsilon) \) with \(x(0) = \bar{x} \) such that \(f(x(\varepsilon), \varepsilon) = 0 \) for all \(\varepsilon \) in some neighborhood of \(\varepsilon = 0 \).
EXAMPLE \[X^3 + \varepsilon X - 1 = 0, \quad 0 < \varepsilon \ll 1 \]

Assume

(1) \[X = X_0 + \varepsilon X_1 + \varepsilon^2 X_2 + \cdots \]

Use (1) in \(\frac{f(x, \varepsilon)}{\varepsilon} = 0 \)

\[(X_0 + \varepsilon X_1 + \varepsilon^2 X_2 + \cdots)^3 + \varepsilon (X_0 + \varepsilon X_1 + \cdots) - 1 = 0 \]

Expand and collect in powers of \(\varepsilon \).

\[(X_0^3 + 3X_0^2X_1\varepsilon + (3X_0X_1^2 + 3X_0^2X_2)\varepsilon^2) + \varepsilon (X_0 + \varepsilon X_1 + \cdots) - 1 = 0 \]

Arrive at a set of eqns which can be solved.

\(O(1) \) \[X_0^3 - 1 = 0 \] solve for \(X_0 \)

\(O(\varepsilon) \) \[3X_0^2X_1 + X_0 = 0 \] then \(X_1 \)

\(O(\varepsilon^2) \) \[3X_0^2X_2 + 3X_0X_1^2 + X_1 = 0 \] then \(X_2 \)

Solving sequentially

\[X_0 = 1 \]

\[X_1 = -\frac{1}{3} \]

\[X_2 = 0 \]

To conclude

\[x(\varepsilon) = 1 - \frac{1}{3} \varepsilon + O(\varepsilon^3) \]
EXAMPLE

\[x^2 - 1 - \varepsilon e^x = 0, \quad 0 < \varepsilon \ll 1 \]

\[x^2 - 1 = \varepsilon e^x \]

\text{intersection of curves}

\text{clearly two roots}

Seek a regular approximation for both roots.

(1) \[\bar{x}(\varepsilon) = x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + O(\varepsilon^3) \]

Need an expansion for \(e^{\bar{x}(\varepsilon)} \). First note

(2) \[e^{x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \cdots} = e^{x_0} e^{\varepsilon (x_1 + \varepsilon x_2 + \cdots)} \]

Letting \(z = \varepsilon (x_1 + \varepsilon x_2 + \cdots) \) which is small

\[e^z = 1 + z + \frac{1}{2} z^2 + \cdots \]

\[e^z = 1 + (\varepsilon x_1 + \varepsilon^2 x_2 + \cdots) + \frac{1}{2} (\varepsilon x_1 + \varepsilon^2 x_2 + \cdots)^2 \]

(3) \[e^z = 1 + \varepsilon x_1 + (x_2 + \frac{1}{2} x_1^2) \varepsilon^2 + O(\varepsilon^3) \]

Using (3) in (2) we find

(4) \[e^{\bar{x}(\varepsilon)} = e^{x_0} + \varepsilon x_1 e^{x_0} + (x_2 + \frac{1}{2} x_1^2) e^{x_0} \varepsilon^2 + \cdots \]

Now use (4) and (1) in \(f(x, \varepsilon) = 0 \), expand and collect powers of \(\varepsilon \).
\[(x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \cdots)^2 \quad -1 - \varepsilon (e^{x_0} + \varepsilon x_1 e^{x_0} + O(\varepsilon^2)) = 0\]

\[x_0^2 + \frac{2x_2}{x_1} + 2x_0 x_1 \varepsilon + (2x_0 x_2 + x_1^2) \varepsilon^2 \quad -1 - \frac{\varepsilon e^{x_0} - \varepsilon^2 x_1 e^{x_0} + O(\varepsilon^3)}{} = 0\]

Matching powers of \(\varepsilon\)

(5) \[x_0^2 - 1 = 0 \quad O(1)\]

(6) \[2x_0 x_1 - e^{x_0} = 0 \quad O(\varepsilon)\]

(7) \[2x_0 x_2 + x_1^2 - e^{x_0} x_1 = 0 \quad O(\varepsilon^2)\]

For smaller root \(\bar{x}_-\) we have \(x_0 = -1\)
which when used in (6) - (7) yields
\[\bar{x}_-(\varepsilon) = -1 - \frac{1}{2} e^{-1} \varepsilon + \frac{3}{8} e^{-2} \varepsilon^2 + \cdots\]

Similarly for \(\bar{x}_+\) we have \(\bar{x}_+(0) = x_0 = +1\)
\[\bar{x}_+(\varepsilon) = +1 + \frac{1}{2} e \varepsilon + \frac{1}{8} e^2 \varepsilon^2 + \cdots\]

These are approximate solns to a problem with no known "exact" soln (formula).
Regular Solns (Algebraic) - General Theory

Seek a regular soln \(\bar{x}(\varepsilon) \) of

\[f(x, \varepsilon) = 0 \]

where

\[\bar{x}(\varepsilon) = x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \cdots \]

or equivalently by Taylor's Thm

\[\bar{x}(\varepsilon) = \bar{x}(0) + \varepsilon \bar{x}'(0) + \frac{1}{2!} \bar{x}''(0) \varepsilon^2 + \cdots \]

Define

\[F(\varepsilon) = f(\bar{x}(\varepsilon), \varepsilon) \]

This function has a Taylor series which must vanish

\[F(\varepsilon) = F(0) + F'(0) \varepsilon + \frac{1}{2} F''(0) \varepsilon^2 + \cdots = 0 \]

Using the chain rule

\[F'(\varepsilon) = f_x(\bar{x}(\varepsilon), \varepsilon) \bar{x}'(\varepsilon) + f_\varepsilon(\bar{x}(\varepsilon), \varepsilon) \]

Thus, since \(\bar{x}(0) = x_0, \bar{x}'(0) = x_1 \), we have

\[F(0) = f(x_0, 0) = 0 \quad O(1) \]

\[F'(0) = f_x(x_0, 0) x_1 + f_\varepsilon(x_0, 0) = 0 \quad O(\varepsilon) \]

are the first two of a sequence of eqns for finding \(x_0, x_1, x_2 \ldots \) from setting all derivatives of \(F \) equal to zero.
To $O(\varepsilon^2)$ one must compute $F''(\varepsilon)$

$$F''(\varepsilon) = \int_{x} (\bar{x})^2 + 2 \int_{x \varepsilon} \bar{x} + \int_{\varepsilon} \bar{x}^2 + \int_{\varepsilon \varepsilon}$$

Noting $x_2 = \frac{1}{2} \bar{x}''(0)$ by comparing (2) - (3) we find

(7) $F''(0) = \int_{x} (0) x_1^2 + 2 \int_{x \varepsilon} (0) x_1 + 2 \int_{\varepsilon} (0) x_2 + \int_{\varepsilon \varepsilon}$

where ()$^{(0)}$ denotes evaluation at $(x_0, 0)$.

Having found x_0, x_1 equation (7) can be used to find x_2 from the condition $F''(0) = 0$.

Example

Larger root of $f(x, \varepsilon) = x^2 - 1 - \varepsilon (3 + x)^{-\frac{1}{2}}$

\[
\begin{align*}
 f_x(x, \varepsilon) &= 2x + \frac{1}{2} (3 + x)^{-\frac{3}{2}} \varepsilon \\
 f_x(x_0, 0) &= 2x_0 \\
 f_\varepsilon(x, \varepsilon) &= -(3 + x)^{-\frac{1}{2}} \\
 f_\varepsilon(x_0, 0) &= -(3 + x_0)^{-\frac{1}{2}}
\end{align*}
\]

The leading equation is

$$f(x_0, 0) = x_0^2 - 1 = 0 \quad \Rightarrow \quad x_0 = 1$$

Then, general theory and $f_x(1, 0) = 2, f_\varepsilon(1, 0) = -\frac{1}{2}$

$$f_x(x_0, 0) x_1 + f_\varepsilon(x_0, 0) = 0$$

$$2x_1 - \frac{1}{2} = 0$$

$$x_1 = \frac{1}{4}$$

and $x(\varepsilon) = 1 + \frac{1}{4} \varepsilon + O(\varepsilon^2)$