Singular Perturbation Theory - Algebraic

Some solutions of

\(f(x, \varepsilon) = 0 \)

may not have regular expansions

\(x = x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \cdots \)

but may be expressable using different gauge functions. We illustrate this by way of example

EXAMPLE \(\varepsilon x^2 - 1 + \varepsilon = 0 \)

No solution of this equation has a regular expansion like (2). If we assumed (2) we would arrive at the contradictory statement \(-1 = 0\), from which we would conclude our assumption was false.

Here we know the exact solution \(\bar{x}(\varepsilon) \)

\[\bar{x}(\varepsilon) = \pm \sqrt{\frac{1 - \varepsilon}{\varepsilon}} \]

which we can expand

\[\bar{x}(\varepsilon) = \pm \varepsilon^{-\frac{1}{2}} (1 - \varepsilon)^{\frac{1}{2}} \]

\[= \pm \varepsilon^{-\frac{1}{2}} (1 - \frac{1}{2} \varepsilon - \frac{1}{8} \varepsilon^2 + \cdots) \]

\[= \pm \left(\frac{1}{\sqrt{\varepsilon}} - \frac{1}{2 \sqrt{\varepsilon}} - \frac{1}{8} \varepsilon^{\frac{3}{2}} + \cdots \right) \]

which is singular (grows) in \(\varepsilon \) and appropriate gauge functions would be \(\varepsilon^{\frac{n}{2}}, n = -1, 0, 1, 2, \ldots \)
Thus, it might be reasonable to expect different kinds of asymptotic expansions for different roots.

For many problems involving powers of x, the solution is often expressible in powers of

$$S(\varepsilon) = \varepsilon^{\beta}$$

for some β, i.e. $\beta = \frac{1}{3}, \frac{1}{2}$ as in

$$\varepsilon x^3 - 1 = 0 \quad \Rightarrow \quad x = \varepsilon^{-\frac{1}{3}}$$

$$\varepsilon x^2 - 1 = 0 \quad \Rightarrow \quad x = \varepsilon^{-\frac{1}{2}}$$

Both these latter examples have singular behavior in that they grow as $\varepsilon \to 0$.

Some solutions may not be regular, involve different gauge functions but are not singular. A trivial example:

$$x^2 - \varepsilon = 0 \quad \Rightarrow \quad x = \pm \sqrt{\varepsilon}$$

Re-scaling and Dominant Balance

A common way to find singular solutions of

$$f(x, \varepsilon) = 0$$

is to scale x by $\mu(\varepsilon) = \varepsilon^\alpha$ as follows

$$F(\bar{x}, \varepsilon) = f(\varepsilon^\alpha \bar{x}, \varepsilon) \quad \Rightarrow \quad \bar{x} = \frac{x}{\varepsilon^\alpha}$$

and the seek a series solution for \bar{x} in an appropriate power of ε.
Example

\[f(x, \varepsilon) = \varepsilon x^3 - x + \varepsilon = 0 \]

First note that there is a regular soln

\[x = x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + O(\varepsilon^3) \]

From standard methods, \(x_0 = 0, x_1 = 1, x_2 = 0 \)

so that

\[x = \varepsilon + O(\varepsilon^3) \]

is an approximation of that regular soln.

Seek large singular root now.

(1) \[x = \frac{X}{\varepsilon^\alpha} \quad \alpha > 0 \]

then \(f(x, \varepsilon) \) becomes

\[\varepsilon^{1-3\alpha} X^3 - \varepsilon^{-\alpha} X + \varepsilon = 0 \]

(2) \[X^3 - \varepsilon^{2\alpha-1} X + \varepsilon^{3\alpha} = 0 \]

(1) \(\Rightarrow \) (2)

Choose \(\alpha \) so that terms (1) and (2) are of the same order, i.e.,

\[2\alpha - 1 = 0 \]

\[\alpha = \frac{1}{2} \]

yields

(3) \[X^3 - X + \varepsilon^{3/2} = 0 \]
Note then that \(f(x, \varepsilon) = 0 \iff F(x, \delta) \)
where
\[
(4) \quad F(x, \delta) = x^3 - x + \delta = 0
\]
where \(\delta = \varepsilon^{3/2} \ll 1 \).

The problem (4) has a regular expansion in \(\delta \), i.e.
\[
x = x_0 + \delta x_1 + O(\delta^2)
\]
yields

\[
O(1) \quad x_0^3 - x_0 = 0
\]
\[
O(\delta) \quad 3x_0^2 x_1 - x_1 = -1
\]

Consider only non-zero solutions of \(O(1) \) problem
\[
x_0 = \pm 1
\]
regardless of \(\text{sign}(x_0) \) we have
\[
x_1 = -\frac{1}{2}
\]
and
\[
x = \pm 1 - \frac{1}{2} \delta + O(\delta^2)
\]
In terms of original scaling the two large roots are
\[
x = \frac{1}{\sqrt{\varepsilon}} \left(\pm 1 - \frac{1}{2} \varepsilon^{3/2} + O(\varepsilon^3) \right)
\]
EXAMPLE

\[f(x, \varepsilon) = \varepsilon x^4 - x - 1 = 0 \]

A regular solution is (by standard methods)

(1) \[x = 1 - \varepsilon - 4\varepsilon^2 + O(\varepsilon^3) \]

Seek singular solutions. Rescale \(x \):

(2) \[x = \frac{X}{\varepsilon^\alpha} \quad \alpha > 0 \]

where \(\alpha \) is to be chosen. Re-express equation in terms of \(X \):

\[\varepsilon^{1-4\alpha} X^4 - \varepsilon^{-\alpha} X - 1 = 0 \]

\[X^4 - \varepsilon^{3\alpha-1} X - \varepsilon^{4\alpha-1} = 0 \]

(1) \(\Rightarrow \) (2) \(\Rightarrow \) (3)

Choose \(\alpha \) so that terms (1) and (2) have same order.

(3) \[\alpha = \frac{1}{3} \]

yields

(4) \[X^4 - X - \varepsilon^{\frac{1}{3}} = 0 \]

Seek expansion of (4) of the form

\[X = X_0 + \delta(\varepsilon) X_1 + O(\delta^2) \]

where

\[\delta(\varepsilon) = \varepsilon^{\frac{1}{3}} \]
Obtain $O(1)$ and $O(\varepsilon)$ equations

$O(1)$ \quad \bar{X}_0^4 - \bar{X}_0 = 0$

$O(\varepsilon)$ \quad 4\bar{X}_0^3\bar{X}_1 - \bar{X}_1 - 1 = 0$

whose soln (non-zero, real) is

\[\bar{X}_0 = 1, \quad \bar{X}_1 = \frac{1}{3}\]

Hence

\[\bar{X} = 1 + \frac{1}{3}\varepsilon + O(\varepsilon^2)\]

Given (2) we obtain the following expansion for the singular (large) root of $f(x, \varepsilon) = 0$.

(5) \quad x = \frac{1}{\varepsilon^{\frac{1}{3}}} \left(1 + \frac{1}{3} \varepsilon^{\frac{1}{3}} + O(\varepsilon^{\frac{2}{3}}) \right)

Expanded out

\[x = \frac{1}{\varepsilon^{\frac{1}{3}}} + \frac{1}{3} + O(\varepsilon^{\frac{1}{3}})\]

Remarks: In summary we found two real roots for the quartic. The other two roots are complex.

Of the two real roots the regular soln is $O(1)$ and the singular soln is $O(\varepsilon^{-\frac{1}{3}})$
Dominant Balance (Last Comments)

Asymptotic expansions of roots need not be in powers of ε. Consider for instance

$$f(x, \varepsilon) = x e^{-x} - \varepsilon = 0$$

has two roots $\overline{x}_1(\varepsilon)$ and $\overline{x}_2(\varepsilon)$ as can be seen from the graph.

A regular expansion yields

$$\overline{x}_1(\varepsilon) = \varepsilon + \varepsilon^2 + \frac{3}{2} \varepsilon^3 + O(\varepsilon^4)$$

For the large root one must assume

$$\overline{x}_2(\varepsilon) = x_0 \mu(\varepsilon) + o(\mu)$$

Taking log of (1)

$$\log x - x - \log \varepsilon = 0$$

$$\log (x_0 \mu + o(\mu)) - x_0 \mu - \log \varepsilon + o(\mu) = 0$$

(1) (2) (3)

If one chooses $\mu(\varepsilon) = \ln \varepsilon$ then one can show for $x_0 = -1$ the term (1) is $o(\mu)$ as well.
One then finds

\[\overline{x}_2(\varepsilon) = -\ln \varepsilon + o(\ln \varepsilon) \]

Through a procedure called "bootstrapping" one can continue to expand \(\overline{x}_2(\varepsilon) \).
In this case (without details)

\[(2) \quad \overline{x}_2(\varepsilon) = -\ln \varepsilon + \ln |\ln \varepsilon| + o(\ln |\ln \varepsilon|) \]

The point:

Some algebraic equations can be represented as powers of \(\varepsilon \), i.e.

\[\overline{x}(\varepsilon) = \varepsilon^{-\delta} \left(x_0 + x_1 \varepsilon + x_2 \varepsilon^2 + \ldots \right) \]

Here \(\delta = 0 \) gives the regular series and if \(\delta > 0 \) the root is singular.

However, some roots have expansions involving unusual gauge functions such as that (singular) root in eqn (2) above.