Theorem 0.1 If there is a pair $\left(\mu^{*}, x^{*}\right)$ for which

$$
\begin{align*}
f\left(x^{*}, \mu^{*}\right) & =0 \tag{4}\\
f_{x}\left(x^{*}, \mu^{*}\right) & =0 \tag{5}\\
f_{\mu}\left(x^{*}, \mu^{*}\right) & \neq 0 \tag{6}\\
f_{x x}\left(x^{*}, \mu^{*}\right) & \neq 0 \tag{7}
\end{align*}
$$

then $\dot{x}=f(x, \mu)$ has a saddle-node bifurcation with quadratic tangency at $\left(\mu^{*}, x^{*}\right)$.

Transcritical (2-branch)
Theorem 0.2 If there is a pair $\left(\mu^{*}, x^{*}\right)$ for which

$$
\begin{align*}
f\left(x^{*}, \mu^{*}\right) & =0 \tag{8}\\
f_{x}\left(x^{*}, \mu^{*}\right) & =0 \tag{9}\\
f_{\mu}\left(x^{*}, \mu^{*}\right) & =0 \tag{10}\\
f_{x \mu}\left(x^{*}, \mu^{*}\right) & \neq 0 \tag{11}\\
f_{x x}\left(x^{*}, \mu^{*}\right) & \neq 0 \tag{12}
\end{align*}
$$

then $\dot{x}=f(x, \mu)$ has a (2 branch) transcritical bifurcation at $\left(\mu^{*}, x^{*}\right)$.

Pitchfork (Quadratic Tangency)

Theorem 0.3 If there is a pair $\left(\mu^{*}, x^{*}\right)$ for which

$$
\begin{align*}
f\left(x^{*}, \mu^{*}\right) & =0 \tag{13}\\
f_{x}\left(x^{*}, \mu^{*}\right) & =0 \tag{14}\\
f_{\mu}\left(x^{*}, \mu^{*}\right) & =0 \tag{15}\\
f_{x x}\left(x^{*}, \mu^{*}\right) & =0 \tag{16}\\
f_{x \mu}\left(x^{*}, \mu^{*}\right) & \neq 0 \tag{17}\\
f_{x x x}\left(x^{*}, \mu^{*}\right) & \neq 0 \tag{18}
\end{align*}
$$

then $\dot{x}=f(x, \mu)$ has a pitchfork bifurcation with quadratic tangency at $\left(\mu^{*}, x^{*}\right)$.

