Math 454 (2021) Assignment 1

(Due: Thursday, September 16, 2021 in class)

1. (5) The following initial value problem has the sole fixed point $\bar{x}=-1$. How long does the solution take to reach \bar{x}, i.e., infinite time, finite time (in which case exactly how much time):

$$
\frac{d x}{d t}=-\sqrt{x+1} \quad, \quad x(0)=3
$$

2. (5) Find two solutions of the initial value problem

$$
\begin{equation*}
\dot{x}=\sqrt{1-x^{2}} \quad, \quad x(0)=1 \tag{1}
\end{equation*}
$$

For each of your solutions state the maximum range of t for which they exist.
3. (15) For the following differential equations use phase portraits to classify all fixed points (as stable or unstable). Sketch a qualitatively accurate phase portrait labelling all fixed points.
a) $\dot{x}=(1-x)(2-x)$
b) $\dot{x}=x^{2}(6-x)$
c) $\dot{x}=e^{-x^{2}}-x$ (Use the Intermediate Value Theorem to prove existence)
4. (5) Using Picard iteration find a (infinite) series representation of the solution to

$$
\dot{x}=x \quad, \quad x(0)=1 .
$$

Does the series converge to the unique solution $x(t)=e^{t}$?
5. (5) Let $x(t)$ be the solution of

$$
\dot{x}=x^{2}-1 \quad, \quad x(0)=1 .
$$

Compute the first four terms of the Taylor series of $x(t)$ about $t=0$, i.e.,

$$
x(t)=x(0)+x^{\prime}(0) t+\frac{1}{2} x^{\prime \prime}(0) t^{2}+\frac{1}{3} x^{\prime \prime \prime}(0) t^{3}+\cdots
$$

6. (5) Compute the potential function $V(x)$ for the system

$$
\dot{x}=r+x-\frac{1}{3} x^{3}
$$

where $r \in \mathbb{R}$ is a parameter. Sketch $V(x)$ if $r \in[0,2 / 3)$ labelling the location of fixed points and categorizing them as stable or unstable.

