Homework 4 (Math 454) - 40max

Due: Thursday, November 4, 2021.

1. [5] Consider the initial value problem:

$$
\frac{d \vec{x}}{d t}=A \vec{x} \quad, \quad \vec{x}(0)=\vec{x}_{0}=\binom{x_{0}}{y_{0}}
$$

One can find "a" fundamental matrix $\Psi(t)$ for the problem by putting any two independent solutions of the system into the columns of $\Psi(t)$. Then the general solution is $\vec{x}(t)=\Psi(t) \vec{c}$ where \vec{c} is a constant vector. However, as show in my posted notes, there is a very special unique fundamental matrix $\Phi(t)$ given by

$$
\Phi(t) \equiv \Psi(t) \Psi(0)^{-1}
$$

such that the solution of the initial value problem is (simply)

$$
\vec{x}(t)=\Phi(t) \vec{x}_{0}
$$

Find $\Phi(t)$ for:

$$
A=\left[\begin{array}{ll}
4 & -3 \\
8 & -6
\end{array}\right]
$$

2. [35] Below are four different matrices A defining a linear system $\dot{x}=A x$.
a) $A=\left[\begin{array}{rr}1 & 1 \\ 4 & -2\end{array}\right]$
b) $A=\left[\begin{array}{rr}-3 & 2 \\ -1 & -1\end{array}\right]$
c) $A=\left[\begin{array}{rr}-2 & 1 \\ 1 & -2\end{array}\right]$
d) $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$
e) $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right]$

For each of the systems
i) Classify the stability of the origin indicating if it is (Liapunov) stable, attracting, asymptotically stable, neutrally stable and/or unstable.
ii) Classify them as stable or unstable nodes/spirals, centers or saddles (when appropriate).
iii) Draw a qualitatively accurate phase portrait indicating eigenspaces $E_{\lambda_{k}}$ for all real eigenvalues λ_{k}. Show the correct direction of the trajectories, and axes for any (elliptical) centers.
iv) Carefully define the stable, center, unstable manifolds $E^{s}(0) E^{c}(0)$, and $E^{u}(0)$, respectively, of the origin. Some may be the empty set $\}$ and some may be the entire plane \mathbb{R}^{2}. Others may be $E^{x}(0)=\operatorname{span}\left\{\zeta_{k}\right\}$ for some ζ_{k}.

