2 Review of Linear Algebra

Here we give an overview of some linear algebra tools and definitions needed to solve
and analyze the dynamics of linear systems in the next section.

First, the imaginary number 4 is that number such that i = —1 and the symbol €
will be used to denote the space of complex numbers. Thus z € € has the form

z=a+1i , a,belR
We will also need the identity
e = e*(cos b+isin b)

which is proveable using Taylor series expansions.
For any matrix A € €™*", we define the nullspace N(A) of A as:

N(A)={zeC": Az =0}.

The zero vector is always in N(A4). A necessary condition for N(A) to be nontriv-
ial (not only the zero vector) is that its determinant vanishes. In this case, A is not
invertible.

If A eC??,

a a
A = i1 12 . Qi e (D,
Q21 Q22

then its determinant is
det(A) = a11a92 — @120

If det(A) # 0 the inverse matrix A~! of A € T**? exists and is given by the simple
formula:
-1 _ ; { a2 —a12 }
T det(A) | —az1 au '

For A € ©**? (“2 by 2" matrices) the computation of the nullspace is very simple.
If det(A) = O then the (two) row vectors of A are necessarily dependent so row reduc-
tion is not needed to find a spanning vector for N(A). The example below illustrates
the determination of such a spanning vector.
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the equation Ax = 0 is equivalent to

Example 1 For the matrix

201 —x9 = 0
—6x1+3z2 = O

Setting 1 = 1 one finds T2 = 2 so that by defining ¢ = (1,2)7, the nullspace of A is

any multiple of 5 or .
N(A) = span{(}.

The nullspace is the line xs = 221 in R2



In order to solve linear systems of differential equations we must first define eigen-
values, eigenvectors and eigenspaces. Though we will only be dealing with real matri-
ces A we will state the definitions as if A were complex.

Definition 10 Ler A € €™, A number \ € € is an eigenvalue of A if there exists an
z € C", = # 0 such that Az = A\z. Any such x associated with an eigenvalue X is an
eigenvector of A. Further, for any eigenvalue )\ of A we define the eigenspace Ex(A)
of A as:

E\x(A) ={z eC": Az = Az}

An alternate way of thinking of eigenvalues is that they are those A for which
N(A — XI) is nontrivial (here I is the identity matrix). This is only possible if
det(A — AT) vanishes. Thus, eigenvalues are roots of the characteristic polynomial

P\ =det(A—N)=0.

Example 2 Ler

Then
P(/\)zdet([ P D SN A—6=(A=3)(A+2).

Thus, the eigenvalues of A are A1 = 3 and As = —2. To find an eigenvector 51 of A
associated with the eigenvalue Ay note that
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so that (1 = (1,3)T and Ey,(A) = span{(1,3)T}. In R? this space is the line
Ty = 3x1. For the other eigenvalue A2 one finds (5 = (1, —2)T and the eigenspace
E\,(A) = span{(1,—2)T} is the line zo = —2z;.
Now we have the standard diagonalization theorem:

Theorem 1 (Diagonalization) If A € €™ has n distinct (nonequal) eigenvalues
AL, A2, ... A, With associated eigenvectors (1,(a, . . . G, then the matrix S with (; as
its columns

S =[0G Gl

diagonalizes A as follows

S™1AS = A

where

A = diag(Ai, Mg, . An) =

OO O >
[en R en) > O
b
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It can easily be verified that in our previous example the matrix
> oz 11
S"“[CI:C2}'—[3 _-2:|

diagonalizes A. Note, however, that not all matrices can be diagonalized by their eigen-
vectors. Indeed, the matrix
01
A=[0 ]

P()\) = \?

has a characteristic polynomial

and thus has only one eigenvalue A = 0. Since A = 0 is a double root it is said to
have algebraic multiplicity 2. Noting, Ep(A) = N(A) we see that the eigenspace is
one dimensional and is spanned by the eigenvector 5 = (1,0)7. Thus, in this instance
there are not two eigenvectors with which to form S'!

Eigenvectors can be normalized so their Euclidean norm is 1. For our previous

example, .
Iél= V10

so that T
é ( 1 3 )
1= | —=, —==
v10 10
is the normalized eigenvector associated with A;. Then, a symmetric ! matrix A €

IR™ ™ can be orthogonally diagonalized by an orthogonal matrix. If A is a real sym-
metric matrix satisfying the assumptions of the previuos Theorem then this orthogonal
matrix ¢ is formed by the normalized eigenvectors:

~

Q=106 .Gl . QTAQ=A.
By defintion, a matrix is orthogonal if
Q—-l — QT
or that their transpose is their inverse. As a consequence
| Qzll=llz] , VzeR"

or that they preserve length.

AT = A



