1 Linear Planar Systems - Definition and Fixed Points
A linear system of differential equations in IR? is a system of the form:

7y = @71+ eI

Ty = a1T1+ a3

where a; ;,1,j = 1,2, can be functions of . Unless otherwise stated, however, we will
assume a; ; are constants.
Letting z = (21, 22)7 be a column vector with ; (t) and 2 (£) as its components,

the system above can be written:
= Az 1)

where the matrix A € IR?*? is:

a a
A= 11 12 .
a1 A22

Providing det(A) # 0 the system & = Az has the sole fixed point z = (0,0). If
det{A) = 0 then every € N(A) is a fixed point.

:’L'=A:E=[i :H(E)

Since det(A) = 0 the nullspace is nontrivial. The first row of Ax = 0 is equivalent to
2x1 — x9 = 0. Setting x1 = 1 yields zo = 2 so that N(A) is spanned by the vector
¢=(1,2)7, ie,

Example 1 Let

N(A) = span{(1,2)T} .

Geometrically, N(A) is the line x5 = 2zy. All points on this line are fixed points of
i = Ax.

2 Solutions to IVP of Linear Systems in the Plane

Let p1(t) and pa(t) be two two solutions of the system & = Az, where A € IR?*2,
That is,
pi=Ap; , 1=1,2

where p;(t) € IR2. The Wronskian of p; and ps is the determinant of the matrix whose
columns are formed by the column vector solutions p;, i.e.,

W (p1,p2) = det[p1|pz]-

The two solutions p; and ps are said to be linearly independent if their Wronskian does
not vanish ! . If the solutions are linear independent then the general solution of the
initial value problem

t=Az , z(0)=uwaxo

Ht can be shown [1] that the Wronskian of two solutions is either identically zero or it never vanishes



is given as
x(t) = c1p1(t) + capa(t)

where ¢; and ¢y are constants.
For any matrix A and vector ¢ = (c1,c2)7, the product Ac yields a linear combi-
nation of the columns of A. Thus, by defining the matrix

U(t) = [p1(t)|p2(8)]
the general solution () can be written:
z(t) = ¥(t)e.

Since the solutions forming the columns of ¥ are linearly independent, ¥ is invertible.
Given the initial condition for z,

z(0) =zp = T(0)c = c=T(0) 2.
Therefore,
z(t) = B(t)xo , V() =T()T(0). @)

The matrix @ is referred to as the Fundamental Solution Matrix for the problem al-
though some authors also call ¥ a Fundamental Solution Matrix. There is only one
® but the ¥ are not unique. For example one could have just as easily defined ¥ =
[ap1|p2] where a is any constant.

Since ®(¢) is unique it is sometimes written

B(t) = et

where A is the original matrix defining the planar system. Precise definitions for func-
tions of matrices (e*, sin(4), etc.) is part of the subject of spectral theory (in Func-
tional Analysis) and is usually accomplished using Taylor series. For instance, since
A™ makes sense for any integer so the convergence of the series

eAt=I+tA+%t2A2+--~

can be discussed using matrix norms. It can be shown that the series on the right does
converge to the fundamental matrix ®(t) but we do not need to discuss such issues
here. Be aware, however, that some books develop the theory for linear systems using
a complete development of the definition of e,

Given a matrix A, equation (2) implies the solution z(t) for any initial condition zg
can be found if one can determine ¥ (t). In most instances, this this amounts to finding
the eigenvalues and eigenvectors of A. To see why this is, suppose one assumes a

solution of the form
sy =ec . = (%)

where A € € is some constant and ¢ € €2 is some constant vector. Substituting this
expression into £ = Az yields

)\CAtC — EAtAC



or

AC=XC.

If A were chosen so that the only ¢ which solved this problem were ( = 0 then the
resulting solution z(¢) = 0 is uninteresting. However, if A is an eigenvalue of A then
there do exist nontrivial { € N{A — AI). Therefore, it appears that a prerequisite
for determining W(¢) is to find all the eigenvalues and eigenvectors of A. Although
this is true, some other issues complicate matters but overall the construction of the
Fundamental Solution Matrix can be categorized into three classes which we discuss
in the subsequent three sections.

2.1 Real, Distinct Eigenvalues

Suppose that A € IR?*? has two real and distinct eigenvalues A1, Ay, Ay # Ag with
respective eigenvectors (; and (5 (Note here that ¢; are vectors and not components of
a vector). From basic linear algebra theory it can be shown that these eigenvectors are
independent and that as a result the following two solutions are linearly independent 2

zi(t) = MG, aa(t) =eMiG
Thus, a Fundamental Solution Matrix is:
T(t) = [eMiG e iG],

from which ®(¢) can be computed.

e=ae=| 1] ( )

The characteristic polynomial for A is

Example 2 Let

P()\) =det(A— M) =(1-X\)?*~4
The roots of P are the eigenvalues. In this case Ay = 3 and Ay = —1.
-2 1

so that ¢ = (1,2)7 is an eigenvector associated with eigenvalue \y. Similarly, (2 =
(1,—2)%. The two inedepndent solutions are

a)= (g ) o w20 =( et )

A Fundamental Solution Matrix is

2we omit the details



Sfrom which one finds

\11(0)—_—[; i] , q/(o)'lz[

DO RD bt
|

NN

[——

To find the solution of the initial value problem
i=Azr , 2(0)=mz=(1,0)T

note that

c=U(0)"1z = ( i )

0 =woe= (20 ) = (¥

As a final note, it is possible that one of the eigenvalues is zero in this case. Suppose
A1 = 0. Then, one solution is a constant (nontrivial) solution

z1(t) =G

where (3 is the eigenvector associated with the zero eigenvalue. In this case, the
eigenspace By, (A) = Ep(A) = N(A)! In other words, A is not invertible since
det(A — 0I) = 0. These constant solutions correspond to the fixed points of £ = Az
which occur on the line spanned by (.

so that

2.2 Complex Conjugate Eigenvalues

Suppose that A € IR**? has complex eigenvalues. Such eigenvalues (being roots of
a quadratic) must occur in complex conjugate pairs. Specifically, suppose that one
eigenvalue A is

A=a+1ib

Then there is a complex eigenvector € €2 such that
AC=X¢

The complex conjugate of any complex number z = a + 4b is defined as:

Z=q—1ib
It can easily be verified that for any two complex numbers z; and 2»,

2129 = 2122

For a vector ¢ = (1, ¢2)7, the conjugate  is defined as:

“(8)



A similar defintion holds for matrices A but in our case, A is real so that A = A,
As aresult, if (A, ¢) is an eigenvalue-eigenvector pair for A, then the calculations

A = X
AC = XN
AC = X

show that (X, ¢) is also an eigenvalue-eigenvector pair for A.
Even though the eigenvalues and eigenvectors are complex,

z(t) = eM¢

is still a solution of £ = Az. The solution, however, is not real. To construct a
Fundamental Solution Matrix, we need two linearly independent real solutions. Toward
this end, we define the notations Re(X) and Im(X) to be the real and imaginary parts
of X, respectively. Then, z(t) = x.(t) + iz;(f) where x, = Re(z) and z; = I'm(z).
Substituting this into the differential equation one finds:

Zr + 1% = Az, +1Az;.

Since the real and imaginary parts of each side of this equation must match we see that
real solutions can be extracted from the real and imaginary parts of z(¢). By writing
the complex eigenvector ¢ associated with A = a 4+ ib as

C=G+1iG
where (, = Re({) and §; = Im((;),
a(t) = @G i)
z(t) = e*(cos(bt) +isin(bt))(¢r + i)
x(t) = () +izi(t)
where
zo(t) = e (cos(bt)fr - sin(bt)g:;) ©)
zi(t) = e* (sin(bt)fr + cos(bt)é) . )

Then, a Fundamental Solution Matrix can be formed by using z(¢) and z;(t) as its

columns:
U(t) = [zr(t) | 2:(2)]

Notice that if Re(\) = a = 0, solutions remain bounded but z = 0 is not attracting
(neutral stability). If Re()) < 0,

z(t) = 1z (t) + cozs(t) - 0, ast— oo

demonstrating x = 0 is attracting (and asymptotically stable). If Re(A) > 0, then the
fixed point Z = 0 is unstable since the solution grows without bound.



Example 3 Let
. . 1 -1 ]
- [} 3)(2)
The characteristic polynomial for A is

P(\) =det(A = XI) =\ +2X+2

The roots of P are the eigenvalues. In this case X = —1 + 1 is one eigenvalue (the
other is A = —1 — i which we don’t need).

w-w=[%5" L]

so that ¢ = (1,2 — 9)T is a complex eigenvector associated with the eigenvalue .

Here,
C=Cr+iCi=(;>+i( fj)

Using (3)-(4), one finds two independent (real) solutions:

2alt) = eteost ri(t) = etsint
TN\ e (2¢0s t + sint) TN T e (2sint — cos t)

A Fundamental Solution Matrix is

W(t) = e“teost e“tsint
T | e H(2cost+sint) e t(2sint—cost) |’

Sfrom which ®(t) can be computed.

2.3 Real and Equal Eigenvalues

The last case to consider is when A4 € IR**? has a single repeated eigenvalue. An
simple example of such a matrix is:

=[5 1]

whose characteristic polynomial is P = (1 — A2, ie., A = 1 is the sole (repeated)
eigenvalue.
If Ao is a repeated eigenvalue of A € IR%*?2 and (o is the associated eigenvector
then
z(t) = (o

is still a solution. The problem is that we do not have another eigenvalue-eigenvector
pair from which to construct a second solution 3. To find a second solution, assume
that

y(t) = te''n” + e (5)

3except in the exceptional case where A is the zero matrix. Then, Ao = 0 and (1, 07T, (0, )7 are two
independent eigenvectors,



where n7* and 7 are vectors to be determined. Straight forward calculations reveal
Ay — § = te™ (An* = don") + € (An — don — ")
Thus, if we choose 1™ and 77 so that

(A —XoI)n* 0 (6)
(A=Xl)np = 7 (N

then y(t) solves y = Ay. Since A is an eigenvalue of A then (6) will be satisfied by
the choice * = (o, the eigenvector. In summary, the second solution y(¢) is

I

y(t) = teMigy + ey (8)

where 7 is a solution of
(A=2oI)n=Co . ®

Then the Fundamental Solution Matrix is formed in the usual way:
U(t) = [a(t) ly(t) ] =[G | teX*Go + ' ].

One key issue constructing W(t) in such a way is the solvability of (9). In particular,
one cannot simply write 7 = (A — X\oJ)~1(o since Ag was chosen so that the inverse
of (A — AoJ) did not exist! Nevertheless, solution 7 of (9) may still exist *. Below we
illustrate the procedure in an example.

Example 4 Ler

The characteristic polynomial for A is
P(\) = det(A — \I) = (\ - 2)*
Thus A = Ao = 2 is a repeated eigenvalue. Since
-1 -1
u-= 7 7,
Co = (1, =17 is an eigenvector associated with the eigenvalue Ao. Thus,

2t
o) == _u )

is a solution. To find y(t) in (8) we need to find a solution 1 of (A — 2I)n = (o. If
n = (n,n2)7, this is the same as finding a solution of :

) -(4)

4They won’t be unique since one can can always add an element of N(A — Agl) to 77 and that will still
be a solution.




As an augmented matrix this system is:

m-ariel=| 77 Y]

3

As a scalar equation this is equivalent to:

which after row reduction yields:

(el ]

-m—n2=1
so that if ;1 = —1, we must have 172 = 0 or
n= ("’1’0)11 .

Then, y(t) is known:

Then, a Fundamental Matrix Solution is

621. (t _ 1)62«‘.
__eZt __tth

T() = [2(t) [y(t)] = [

Notice how the growth of y(t) is faster than the growth of x(t) since the exponential is
multiplied by t.

2.4 Basic Linear Subspaces for Fixed Points

For the planar system
i=Ar , AeR>™

the solution z(¢) and fixed point stability properties can all be determined from the
eigenvalues and eigenvectors of A. If

a1 a
A= 11 Q12
a21 Q22
the characteristic polynomial

P(/\) = det(A — )\I) =\% — (all + age) A + (0,110,22 — alzagl)

Written another way,

P()\) = A% — Tr(A)\ + det(A)
where Tr(A) = a11 + agq is the trace of the matrix A. Thus, the stability of the fixed
point Z is determined entirely by the two quantities T'7(A) and det(A). Roots of P())
are:

e = % (Tr(4) + /TR (A - ddet(A))



By considering all the possible permutations of signs of Tr(A) and (T'r(A))% ~det(A)
one can easily deduce the following table for the stability of T = 0.
Associated with T = 0 we also define three linear manifolds:

Definition 1 For A € IR**?, let
Ak =M, Ce=zpt+iye ., k=12

where i, and yi, are the real and imaginary parts of the eigenvectors . when they are
complex. Then,

E*(0) = span{zi,yx : Re(Ax) <0}
E°(0) = span{zw,yi : Re(Ax) =0}
E*(0) = span{zk,yi: Re(A\t) > 0}

Here E*(0), E<(0) and E“(0) are the linear stable, center and unstable manifolds
associated with T = 0.

det(A) <0 Z = 0 is asaddle

0 < det(A) < 3(TrA)?, TrA <0 | £ =0is astable node

det(A) > $(TrA)*, TrA <0 Z = 0 is a stable spiral

det(A) > 0,TrA=0 % == 0 is a center

det(A) > $(TrA)?, TrA>0 T = 0 is an unstable spiral

0 <det(A) < %(Tv*A)z, TrA >0 | T = 01is an unstable node

det(4) =0 Z € N{A) are all fixed points




