Positive Invariance and Trapping Regions

Recall the flow function $\varphi(t, x_0)$ for $\dot{x} = f(x)$ satisfies

(1) \[\frac{\partial \varphi}{\partial t} = f(\varphi) \]
(2) \[\varphi(0, x_0) = x_0 \]

One can examine the image of sets M under the flow φ

Definition A set M is positively invariant if

$\varphi(t, M) \subseteq M \quad \forall t \geq 0$

If additionally it is closed and bounded then M is called a trapping region.
One way to check if a set \(M \) is a trapping region is to show

\[
f \cdot N < 0 \quad \forall x \in \partial M
\]

where \(N \) is the outward normal on the boundary \(\partial M \) of the region \(M \).

Illustrates a case where \(f \) is always pointing into the interior of \(M \) and

\[
f \cdot N < 0 \quad \forall x \in \partial M
\]

Example

\[
x = -xy - x \\
y = -y
\]

\(\partial M \) is the unit circle and \(M \) its interior.

\(\partial M \) is parametrized by \((x, y) = (\cos \theta, \sin \theta)\) and \(N = (\cos \theta, \sin \theta) \) as well.

\[
F(\theta) = -(xy + x, y) \cdot N
\]

\[
\text{algebra}\quad F(\theta) = -(1 + \sin \theta \cos^2 \theta) < 0
\]

Hence \(M \) is a trapping region.

Note \(M \) contains one fixed pt.
Poincaré - Bendixson Theorem

Suppose M is a trapping region for $\dot{x} = f(x)$ which contains no fixed points. Then there exists some periodic orbit C contained entirely in M.

Pf: Difficult. See Perko (1991: pg 227) for details. May be many C in M.

Remarks

1. There are more general versions (later) where M may contain a finite number of fixed points. The conclusion in such generalizations are more complex.

2. Not only does C exist, but $\phi(t, x_0)$ "approaches" C as $t \to \infty$. "Approach" needs a more careful definition.
EXAMPLE

Annular trapping region

\[r = r(4-r^2) + \mu r \sin \theta = f(r, \theta, \mu) \]

\[\dot{\theta} = 1 \]

when \(\mu = 0 \) this system has a stable periodic orbit.

\[f(r, \theta, 0) \]

\[r = 2 \]

Does the orbit persist for \(\mu \neq 0 \)?

Annular trapping region \(M \). Origin solely \(f \times p^+ \).

\[\partial M_+ \]

Want (for trapping)

\[\begin{align*}
 r &> 0 \quad \text{on } \partial M_- \\
 \dot{r} &< 0 \quad \text{on } \partial M_+
\end{align*} \]

On \(\partial M_- \) we need a radius \(r \) small enough so \(f > 0 \)

\[r(4-r^2) > -\mu r \sin \theta \]

Sufficient to choose \(r \) so that \(r(4-r^2) + \mu r \geq -\mu r \sin \theta \)

\[r(4-\mu+r^2) > 0 \]

True if \(r > \sqrt{4-\mu} \) on inner circle \(\partial M_- \).

Similarly \(r < \sqrt{4+\mu} \) on outer circle \(\partial M_+ \) so \(f < 0 \)

Thus if these radii are satisfied \(M \) is indeed a trapping region. By Poincaré-Bendixson there is at least one periodic orbit \(C \) inside \(M \).
EXAMPLE Polar generalizations

\[
\begin{align*}
\dot{r} &= f(r) + \mu G(r, \theta) \\
\dot{\theta} &= 1
\end{align*}
\]

where \(G \) is uniformly bounded

\[|G(r, \theta)| < K \quad \forall (r, \theta) \]

and the graph of \(f(r) \) qualitatively is

\[f(r) \]

Same annular \(M \). On inner boundary \(\partial M \), need

\[f(r) > -\mu G(r, \theta) \]

Sufficient that we pick \(r \) such that

\[f(r) > \mu K \]

which is true for suff. small \(\mu \).

Similar for \(\partial M_+ \), so \(M \) is a trapping region.

EXAMPLE

\[
\begin{align*}
\dot{r} &= r(1-r) + \frac{\mu r^2 \sin^2 \theta}{1 + r^2} \\
\dot{\theta} &= 1
\end{align*}
\]

Bounded so we can find an annular trapping region and system has period orbit.
Omega limit sets

Below $\phi(t, x_0)$ is the flow function for

$$\dot{x} = f(x) \quad x(0) = x_0$$

Defn: p is an ω-limit point of x_0 if there is a sequence of times $\{t_i\}$ with $t_i \to \infty$ such that

$$\phi(t_i, x_0) \to p \quad \text{as} \quad i \to \infty$$

The ω-limit set $\omega(x_0)$ of x_0 is

$$\omega(x_0) = \{ p : p \text{ is an } \omega\text{-limit point} \}$$

Example Stable node

M is positively invariant

$$\omega(x_0) = \{(0,0)\} \quad \forall x_0 \in M$$

Example Half stable periodic orbit

Limit cycle Ω, stable origin

$$\omega(p) = \partial$$

$$\omega(q) = \Omega$$
Example Homoclinic orbit(s)

\[w(p) \text{ is the union of the origin and two homoclinic orbits } H_\pm \]

Example Heteroclinic cycle

\[w(p) \text{ is the union of the two heteroclinic orbits } h_+ \text{ and fixed pts } P \text{ and } Q \]
Poincaré–Bendixson (General)

Suppose M is a trapping region for

$$\dot{x} = f(x), \quad x(0) = x_0$$

which contains a finite number of isolated fixed points $\bar{x}_i, i = 1, 2, \ldots, n$.

Then for each $x_0 \in M$ one of the following is true:

(a) $\omega(x_0)$ is a fixed point

(b) $\omega(x_0)$ is a periodic orbit in M

(c) $\omega(x_0)$ consists of a finite number of fixed points, homoclinic orbits and/or heteroclinic orbits.

Remark: The theorem implies that planar systems can't have "chaos." At most

(i) fixed points

(ii) periodic orbits

(iii) homoclinic cycles

(iv) heteroclinic cycles