Explicit Solutions \(f(x) = \mu x (1-x) \)

When \(\mu = 2 \) the known solution to \(x_{n+1} = f(x_n) \) is

\[
x_n = \frac{1}{2} - \frac{1}{2} \left(1 - 2x_0 \right)^{2^n}
\]

and for \(x_0 \in (0,1) \) one finds \(x_n \to \frac{1}{2} \) which is the non-zero fixed point of \(x \mapsto f(x) \)

In the chaotic regime \(\mu = 4 \) the explicit solution is

\[
(1) \quad x_n = \sin^2 \left(2^n \theta \pi \right)
\]

where for \(x_0 \in (0,1) \)

\[
\theta \pi = \arcsin \left(x_0^{1/2} \right) \quad \theta \in (0, \frac{1}{2})
\]

Theorem: For \(\theta \in (0, \frac{1}{2}) \) one of the following is true

(a) \(\theta \) is rational in which case \(\{x_n\} \) is eventually periodic

(b) \(\theta \) is irrational in which case \(\{x_n\} \) is not eventually periodic.

Here \(\{x_n\} \) is eventually periodic if \(\exists N \in \mathbb{N} \) s.t. \(\{x_n\}_{n=N}^{\infty} \) is periodic of some period.
Proof of (a) First we note \(f \) in

\[z_n = f(\theta) = \sin^2(2^n \theta \pi) \]

is \(\frac{1}{2} \)-periodic in \(\theta \) since for \(n \geq 1 \)

\[f(\theta + \frac{\pi}{2}) = \sin^2(2^n \theta \pi + 2^{n-1} \pi) = f(\theta) \]

Next we let \(\theta \) be a rational number in \((0, \frac{1}{2})\). Thus there are integers \(p, q \) such that

\[\theta = \frac{p}{2^q} \]

Moreover, \(\theta \in S \) where \(S \) is the finite set

\[S = \left\{ \frac{1}{2^q}, \frac{2}{2^q}, \cdots, \frac{p}{2^q}, \cdots, \frac{q-1}{2^q} \right\} \]

Now, let \(n_1 \) be the smallest integer such that

\[2^{n_1} \theta = N_1 + \theta_1 \quad \theta_1 = \frac{p_1}{2^q} \in S \]

for integers \(N_1, p_1 \). In a similar fashion let \(n_2 > n_1 \) be the next largest integer such that

\[2^{n_2} \theta = N_2 + \theta_2 \quad \theta_2 = \frac{p_2}{2^q} \in S \]

for integers \(N_2, p_2 \). Continue this to develop a sequence of \(\theta_k \)

\[\theta_1, \theta_2, \ldots, \theta_k, \ldots \]

all of which are in the finite set \(S \).
From these θ_k we construct a subsequence Z_{n_k} from the orbit Z_n where

$$Z_{n_k} = \sin^2 \left(2^{n_k} \theta_k \pi \right)$$

$$Z_{n_k} = \sin^2 \left((N_k + \theta_k) \pi \right) \quad \text{(periodicity)}$$

$$Z_{n_k} = \sin^2 (\theta_k \pi)$$

Key: $\{Z_n\}$ is a sequence that can only attain a finite number of values since $\{\theta_k\}$ is in S, a finite set. Thus, Z_{n_k} must eventually repeat:

$$Z_{n_1} \quad Z_{n_q} = Z_{n_q}$$

$$n_1 \quad n_2 \quad n_3 \quad n_q$$

shows a period $T = n_q - n_1$ orbit. \qed
\[\theta := \frac{5}{13} \]

\[\text{for } n \text{ from 1 to 12 do } z[n] := \sin\left(2^n \theta \pi \right)^2 \text{ od;} \]

1. \(z_1 := \sin\left(\frac{3}{13} \pi \right)^2 \)
2. \(z_2 := \sin\left(\frac{6}{13} \pi \right)^2 \)
3. \(z_3 := \sin\left(\frac{1}{13} \pi \right)^2 \)
4. \(z_4 := \sin\left(\frac{2}{13} \pi \right)^2 \)
5. \(z_5 := \sin\left(\frac{4}{13} \pi \right)^2 \)
6. \(z_6 := \sin\left(\frac{5}{13} \pi \right)^2 \)

7. \(z_7 := \sin\left(\frac{3}{13} \pi \right)^2 \)
8. \(z_8 := \sin\left(\frac{6}{13} \pi \right)^2 \)
9. \(z_9 := \sin\left(\frac{1}{13} \pi \right)^2 \)
10. \(z_{10} := \sin\left(\frac{2}{13} \pi \right)^2 \)
11. \(z_{11} := \sin\left(\frac{4}{13} \pi \right)^2 \)
12. \(z_{12} := \sin\left(\frac{5}{13} \pi \right)^2 \)

Period 6 for

\[\theta = \frac{5}{13} \]

(2)