Pitchfork Bifurcations - introduction

\[\dot{x} = f(x, \mu) = x(\mu - x^2) \quad \text{cubic} \]

\[\dot{x} = 0 \] is always a fixed point. Has an additional two only if parameter \(\mu > 0 \). Phase portraits

\[\mu < 0 \quad \mu = 0 \quad \mu > 0 \]

results the bifurcation diagram:

\[\text{Supercritical} \]
\[\text{Pitchfork bifurcation} \]
\[\text{(quadratic tangency)} \]

Were the problem altered to \[\dot{x} = -\mu x + x^3 \]

\[\text{Subcritical PF} \]
\[\text{bif. at } (x^*, \mu^*) = (0, 0) \]
Example (Neural net models)

\[\dot{x} = -x + \mu \tanh x = f(x, \mu) \]

Find how fixed pts (roots of \(f \)) vary with \(\mu \) and how sign of \(f \) changes.

Note \(f(x, \mu) > 0 \) only if \(\mu \tanh x > x \)

\[\begin{align*}
0 < \mu < 1 & \\
\mu = 1 & \\
\mu > 1 & \\
\end{align*} \]

Hence the system has a supercritical Pitch Fork bifurcation

\[(x^*, \mu^*) = (0, 1) \]

Note the locus of equilibria can be found by solving \(f(x, \mu) = 0 \) for \(\mu \)

\[\mu = \frac{x}{\tanh x}, \quad x \neq 0 \]
EXAMPLES Pitchforks with quadratic tangencies

(a) \(f(x, \mu) = x(\mu - e^{-x^2}) \)

Subcritical PF at
\((\mu^*, x^*) = (1, 0) \)

(b) \(f(x, \mu) = x(\mu - \sin x^2) \)

For the indicated \(\mu \) constant line the sign of \(f = x(\mu - \sin x^2) \) can change only at
\(x = 0 \quad \mu = \sin x^2 \)

From this we deduce the signs of \(f(x, \mu) \) at various \(x \) along \(\mu \) constant. Can therefore conclude the following bifurcation diagram

Supercritical PF

Two SN (for the range of \(x \) shown)
EXAMPLE Multiple Pitchforks

\[\dot{x} = -x \left(x^2 + \mu^2 - 1 \right) \]

has two "branches" of fixed points

\[\overline{x} = 0 \quad \overline{x}^2 + \overline{\mu}^2 = 1 \]

The latter is a circle of radius 1. The locus of fixed points is

\[x^2 + \mu^2 < 1 \text{ inside circle} \]

hence \(x^2 + \mu^2 - 1 < 0 \) there

Can deduce signs of \(f(x, \mu) \) for various \(\mu \)
and hence fixed point stability:
Structural Stability

Our three generic bifurcations are

\[\dot{x} = x^2 - \mu \quad \text{SN} \]
\[\dot{x} = \mu x - x^2 \quad \text{TC} \]
\[\dot{x} = x(\mu - x^2) \quad \text{PF} \]

We give a casual explanation of the notion of structural stability. Basically a system is structurally stable if the bifurcation diagrams of

\[\dot{x} = f(x, \mu) \]
\[\dot{x} = f(x, \mu) + \varepsilon g(x, \mu) \]

small \(\varepsilon \ll 1 \) perturbation

are "qualitatively" the same for \(\varepsilon \) small enough and \(g \) "well behaved".

Turns out (next three pages) that only the SN is structurally stable.

The notion means that if you "jiggle" the system, the dynamics remain intact.
Structurally Stable SN $f(x, \mu) = \mu - x^2$

$x = f(x, \mu)$

$\dot{x} = f(x, \mu) + \epsilon$

$\epsilon = 0$
Structurally Unstable IC: \(f(x, \mu) = \mu x - x^2 \)

\[
\dot{x} = f(x, \mu)
\]

\[
\dot{x} = f(x, \mu) + \varepsilon
\]

\(\varepsilon = 0.01 \)

no bifurcations!
Structurally Unstable PF: \(f(x, \mu) = x(\mu - x^2) \)

\[x = f(x, \mu) \]

\[x = f(x, \mu) + \varepsilon \]

\(\varepsilon = 0.01 \)