The system of complex numbers \(\mathbb{C} \) is the set \(\mathbb{R}^2 \) with the following addition and multiplication operations for \(z_1 = (x_1, y_1) \) and \(z_2 = (x_2, y_2) \):

1. \(z_1 + z_2 = (x_1 + x_2, y_1 + y_2) \)
2. \(az_1 = (ax_1, ay_1) \quad \forall a \in \mathbb{R} \)
3. \(z_1 z_2 = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1) \)

Although there is not real number \(i \) such that \(i^2 = -1 \), there is a complex number.

The complex number \(i \in \mathbb{C} \) is the ordered pair

\[i = (0, 1) \]

Remarks and notation

Given the defn (3) above

\[i^2 = i \cdot i = (0, 1)(0, 1) = (-1, 0) \]

from which we have the identification

\[i^2 = -1 \]
Theorem: \(\mathbb{C} \) is a field

We verify only a few axioms:

Multiplication commutes \(z_1 z_2 = z_2 z_1 \)

\[
\begin{align*}
z_1 z_2 &= (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1) \\
&= (x_2 x_1 - y_2 y_1, x_2 y_1 + x_1 y_2) \\
&= z_2 z_1
\end{align*}
\]

Existence of additive identity \(z + 0 = z \)

The number 0 \(\in \mathbb{C} \) is the point \(0 = (0,0) \). Then

\[
z + 0 = (x,y) + (0,0) = (x,y) = z
\]

Existence of multiplicative identity \(1 \cdot z = z \)

The number 1 \(\in \mathbb{C} \) is the point \(1 = (1,0) \):

\[
1 \cdot z = (1,0) \cdot (x,y) = (x,y) = z
\]

For any real number \(a \in \mathbb{R} \)

\[
a z = (a,0) \cdot (x,y) = (ax,ay)
\]
Multiplicative inverse z^{-1}

Let $z = (x, y) \neq 0$. Seek $u, v \in \mathbb{R}$ with $z^{-1} = (u, v)$ such that

$$z \cdot z^{-1} = 1$$

is equivalent to

$$(1) \quad (x, y)(u, v) = (1, 0)$$

Expanding out (1) using the definition of multiplication and equating components:

$$xu - yv = 1$$
$$yu + xv = 0$$

Solving

$$z^{-1} = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2} \right)$$

For this (unique) z^{-1} we have $z \cdot z^{-1} = 1$.
Complex plane and simplified notation

Every complex number \(z = (x, y) \) corresponds to a point in \(\mathbb{R}^2 \)

\[y \quad \ldots \quad z \]

and has a real and imaginary part

\[\text{Re}(z) = x \quad \text{Im}(z) = y \]

Simplified notation

\[z = (x, y) \]

(2) \[z = x(1, 0) + y(0, 1) \]

Hence we abbreviate (2) as

\[z = x + iy \]
Multiplication using simplified notation

\[z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2) \]
\[= x_1(x_2 + iy_2) + iy_1(x_2 + iy_2) \]
\[= x_1 x_2 + i x_1 y_2 + i y_1 x_2 + y_1 y_2 i^2 \]

Given \(i = (0,1) \) and \(i^2 = (-1,0) \) we get

\[= (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1) \]

which agrees with the original defn of multiplication.

Multiplicative inverse - simplified notation

\[z^{-1} = \frac{1}{(x+iy)(x-iy)} \]
\[= \frac{x - iy}{x^2 + y^2} \]

agrees with our previous formula for \(z^{-1} \)
Let $z, w \in \mathbb{C}$. Then the quotient is defined by

$$\frac{z}{w} = z \cdot w^{-1} \quad w \neq 0$$

Example

Let $z = 1+2i$ and $w = 1-3i$

$$\frac{z}{w} = \frac{(1+2i)}{1-3i} \cdot \frac{1}{1+3i}$$

$$= (1+2i) \cdot \frac{1+3i}{10}$$

$$= (1+2i) \cdot \left(\frac{1}{10} + \frac{3}{10}i\right)$$

$$= -\frac{5}{10} + \frac{5}{10}i$$

$$= -\frac{1}{2} + \frac{1}{2}i$$
Polar Representation

\[x + iy = z \quad r > 0 \]
\[\theta \in \mathbb{I} \]

Specification of an interval \(\mathbb{I} \) so that the correspondence \((x, y) \leftrightarrow (r, \theta)\) is unique is known as choosing a branch of the argument.

\[\mathbb{I} = (-\pi, \pi] \]

yields the Principal Argument \(\theta = \text{Arg } z \)

Definition: Let \(z = x + iy \in \mathbb{C} \). Then

(i) \(|z| = \sqrt{x^2 + y^2} \) modulus

(ii) \(\theta = \text{arg } z \quad \theta \in \mathbb{I} \), argument

Example: Let \(\text{arg}(z) \in [0, 2\pi) \) and \(\text{Arg}(z) \in (-\pi, \pi) \)

If \(z = -i \) then

\[\text{arg}(z) = \frac{3\pi}{2} \]
\[\text{Arg}(z) = -\frac{\pi}{2} \]
EXAMPLE \(\text{Let } z = \frac{1 + 3\sqrt{3}i}{\sqrt{3} + 2i} \)

After some calculations, \(z = \sqrt{3} + i \)

\[\text{Re}(z) = \sqrt{3}, \quad \text{Im}(z) = 1 \]

From this it is easy to deduce (for \(I = [0, 2\pi] \))

\[|z| = 2, \quad \arg z = \frac{\pi}{6} \]

EXAMPLE Compute real and imaginary parts of \(f(z) \) for \(z = x + iy \)

(i) \[f(z) = \frac{1}{z + 1} = \frac{(2x + 1) - 2iy}{(2x + 1)^2 + 4y^2} \]

(ii) \[f(z) = z^2 = (x^2 - y^2) + 2ixy \]

(iii) \[f(z) = |z|^2 = \sqrt{x^2 + y^2} \]

EXAMPLE: Simplify

\[z = \frac{i^3}{(1 + i)} \]