Points

Definition 0.1 \(z_0 \) is an interior point of \(S \) if \(\exists N_r(z_0) \subseteq S \).

Definition 0.2 \(z_0 \) is an exterior point of \(S \) if \(\exists N_r(z_0) \) containing no point of \(S \).

Definition 0.3 \(z_0 \) is a boundary point of \(S \) if it is neither an interior nor exterior point.

Definition 0.4 \(z_0 \) is a limit point of \(S \) if every \(N_r(z_0) \) contains a point \(z \neq z_0 \) in \(S \).

Note that if \(z_0 \) is a limit point, there is a sequence \(\{z_n\} \) contained in \(S \) such that \(z_n \to z_0 \). Limit points are sometimes called accumulation points because of this property.

Sets in \(\mathbb{C} \)

Definition 0.5 A set \(S \) is open if every point \(z \in S \) is an interior point.

Definition 0.6 A set \(S \) is closed if every limit point of \(S \) is a point of \(S \).

Definition 0.7 If \(S' \) is the set of limit points of \(S \) then \(\bar{S} \equiv S \cup S' \) is the closure of \(S \).

Definition 0.8 A set \(S \) is path-connected if for every \(z_1, z_2 \in S \) there is a polygonal line \(\Gamma \) that is contained entirely in \(S \) and connects \(z_1 \) and \(z_2 \).

Definition 0.9 A (complex) domain is any nonempty open set \(S \)

Definition 0.10 A set \(S \) is bounded if there exists a constant \(M > 0 \) such that

\[|z| < M \quad , \quad \forall z \in S \]
Example \[\text{Im}(z) > 1 \]

Example \[1 \leq |z| \leq 2 \]

Example \[\frac{1}{1+|z+i|} < 4 \]

is the same as \[|z+i| > \frac{1}{4} \]

center \((0, -i)\) **radius** \(\frac{1}{4}\)

(open, unbounded, connected)

EXAMPLE $1Z + 11 \leq \frac{1}{2}$ or $1Z - 11 \leq \frac{1}{2}$

\begin{center}
\includegraphics[width=0.5\textwidth]{example1.png}
\end{center}

closed bounded not connected

EXAMPLE Curves in \mathbb{C}

\begin{center}
\includegraphics[width=0.5\textwidth]{example2.png}
\end{center}

s_1 : closed, bounded
s_2 : closed, unbounded
\[\text{Arg}(Z) = -\frac{\pi}{4} \]

EXAMPLE \mathbb{C} is both open and closed, unbounded

EXAMPLE

\begin{center}
\includegraphics[width=0.5\textwidth]{example3.png}
\end{center}

neither open nor closed

EXAMPLE $|\text{Arg}(Z)| \leq \frac{3\pi}{2}$ closed, unbounded

\begin{center}
\includegraphics[width=0.5\textwidth]{example4.png}
\end{center}

$\text{Re}Z > 0$
Functions of a Complex variable.

Let S be the domain of

$$ f : S \rightarrow \mathbb{C} $$

The range R_f is the set

$$ R_f = \{ w \in \mathbb{C} : \exists z \in S, f(z) = w \} $$

As a mapping from \mathbb{R}^2 into \mathbb{R}^2 there exist functions u and v such that

$$ f(z) = u(x, y) + i v(x, y) \quad z = x + iy $$

$$ f(z) = u(r, \theta) + i v(r, \theta) \quad z = re^{i\theta} $$

EXAMPLE

$$ f(z) = z^2 $$

$$ f(z) = (x^2 - y^2) + i 2xy $$

$$ f(z) = r^2 \cos 2\theta + i r^2 \sin 2\theta $$

EXAMPLE

Square root $f(z) = \sqrt{z}$ where we choose the branch having

$\operatorname{Re} \sqrt{z} > 0$.

In polar with $\theta = \operatorname{Arg} z$

$$ f(z) = \sqrt{z} $$

$$ f(z) = r^{\frac{1}{2}} \cos \left(\frac{\theta}{2} \right) + i r^{\frac{1}{2}} \sin \left(\frac{\theta}{2} \right) $$
Example
\[f(z) = \frac{z}{z + \overline{z}} \]

The domain of \(f \) excludes the \(x=0 \) axis, and

\[f(z) = \frac{x + iy}{(x+iy)+(x-iy)} = \frac{1}{2} + \frac{i}{2} \frac{y}{x} \]

\[u(x,y) \quad v(x,y) \]

Example
\[f(z) = |z|^2 = (x^2 + y^2) + 0 \cdot i \]

Example
\[f(z) = \text{Arg} \, z = \theta \]

Example
Rational function

\[f(z) = \frac{z + 1}{z - 1} \quad z = x + iy \]

then

\[f(z) = \frac{(z+1)(\overline{z}-1)}{|z-1|^2} = \frac{[(x+1)+iy][(x-1)-iy]}{(x-1)^2 + y^2} \]

Expand and collect real/imaginary parts

\[f(z) = \frac{x^2 + y^2 - 1}{(x-1)^2 + y^2} + i \frac{-2y}{(x-1)^2 + y^2} \]

\[u(x,y) \quad v(x,y) \]
Region Mappings

Generally, f maps regions into regions.

EXAMPLE $f(z) = z + 2$

EXAMPLE $f(z) = e^{i \pi z}$

EXAMPLE $f(z) = \bar{z}$
$f(z) = z^2$

$\text{Re } z^2 = x^2 - y^2$

$\text{Im } z^2 = 2xy$
Summary of limits

Definition 0.1 We say the limit

\[\lim_{z \to z_0} f(z) = L \]

if every \(\epsilon > 0 \) there is a \(\delta > 0 \) such that

\[|z - z_0| < \delta \Rightarrow |f(z) - L| < \epsilon \]

\(f(z_0) \) need not be defined at \(z_0 \)

Definition 0.2 We say \(f(z) \) is continuous at \(z_0 \) if

\[\lim_{z \to z_0} f(z) = f(z_0) \]

Here, \(f(z_0) \) is defined at \(z_0 \)

All of the main limit properties that apply to real valued functions also apply to complex valued functions. Below is a partial list where it is assumed all the limits exist.

\[
\begin{align*}
\lim_{z \to z_0} af(z) &= a \lim_{z \to z_0} f(z) & a \in \mathbb{C} \\
\lim_{z \to z_0} (f(z) + g(z)) &= \lim_{z \to z_0} f(z) + \lim_{z \to z_0} g(z) \\
\lim_{z \to z_0} f(z)g(z) &= \lim_{z \to z_0} f(z) \lim_{z \to z_0} g(z) \\
\lim_{z \to z_0} f(g(z)) &= f(g(z_0))
\end{align*}
\]

Theorem 0.3 For \(f : \mathbb{C} \to \mathbb{C} \),

\[f(z) = u(x, y) + iv(x, y) \]

for some functions \(u, v \). For \(z_0 = (x_0, y_0) \), the function \(f(z) \) is continuous if and only if both \(u(x, y) \) and \(v(x, y) \) are continuous at \((x_0, y_0) \).
Example Prove \(\lim_{z \to z_0} z^2 = z_0^2 \)

Choose \(\varepsilon > 0 \) and define

\[
M = \max \left\{ \frac{|z + z_0|}{|z - z_0|} \mid |z - z_0| < r \right\}
\]

max exists. Then if \(\delta = \frac{\varepsilon}{2M} \) we have

\[
|z^2 - z_0^2| = |z + z_0| |z - z_0| < M |z - z_0| < \frac{\varepsilon}{2}
\]

if \(|z - z_0| < \delta \).

Example Show \(f(z) = \frac{\bar{z}}{z} \) not cont. at \(z = 0 \).

\[
f(z) = \frac{x - iy}{x + iy}
\]

\[
\lim_{y \to 0, x=0} f(z) = -1 \quad \text{(A)}
\]

\[
\lim_{x \to 0, y=0} f(z) = +1 \quad \text{(B)}
\]

Since \(\text{(A)} \neq \text{(B)} \), \(\lim_{z \to 0} f(z) \) DNE and \(f \) not cont at \(0 \).
Example \(f(z) = \text{Arg } z \quad \text{discont } x \leq 0, y = 0 \)

![Diagram showing discontinuity on the cut \(\pi \).]

Example Principal Branch \(f(z) = \sqrt{z} \)

\[z = r e^{i \theta}, \quad f(z) = r^{1/2} e^{i \theta/2}, \quad \theta \in (-\pi, \pi] \]

is also discontinuous on \(x \leq 0, y = 0 \)

\[\lim_{\theta \to \pi} f(z) = i r^{1/2} \]
\[\lim_{\theta \to -\pi} f(z) = -i r^{1/2} \]

attains values \(\pm i r^{1/2} \) for every \(N_r(z_0). \) Not cont.

Example \[\lim_{z \to 2} \overline{z} = 2 \]

1. \[|\overline{z} - 2| = |z - 2| = |z-2| < \varepsilon \]

 if \(\delta = \varepsilon \), i.e. if \(|z-2| < \delta = \varepsilon \) then (1) true