1 Averaging

A large class of perturbed problems can (after a transformation) be posed in the standard form

\[
\frac{dx}{dt} = \varepsilon F(x, \theta; \varepsilon) \quad x \in \mathbb{R}^n
\]

(1)

\[
\frac{d\theta}{dt} = \omega(\theta) + \varepsilon G(x, \theta; \varepsilon) \quad \theta \in \mathbb{R}^m
\]

(2)

where \(\varepsilon \ll 1 \), and both \(F \) and \(G \) are \(2\pi \)-periodic in \(\theta \), \(\theta = (\theta_1, ... \theta_m) \). Some authors also pose "standard form" as

\[
\frac{dx}{dt} = \varepsilon F(x, t; \varepsilon) \quad x \in \mathbb{R}^n \quad x(0) = x_0
\]

(3)

where \(F \) is \(2\pi \)-periodic in \(t \). The connection between the two "standard forms" can be seen if one rewrites (3) as the system

\[
\frac{dx}{dt} = \varepsilon F(x, \theta; \varepsilon) \quad (4)
\]

\[
\frac{d\theta}{dt} = 1 \quad (5)
\]

For (3) define the "average"

\[
\hat{F}(x, \varepsilon) \equiv \int_0^{2\pi} F(x, t, \varepsilon) dt
\]

(6)

Let \(y \) satisfy the initial value problem

\[
\frac{dy}{dt} = \varepsilon \hat{F}(y, \varepsilon) \quad y(0) = x_0
\]

(7)

Then there are "averaging" theorems which prove, under certain conditions,

\[
\| x(t) - y(t) \| = O(\varepsilon)
\]

(8)

for \(t = O\left(\frac{1}{\varepsilon}\right) \). The "method of averaging" thus involves

a) A transformation to standard form

b) Solving the averaged equations

1.1 Transformation to Standard Form

Consider the problem

\[
\ddot{x} + x = \varepsilon f(x, \dot{x}) \quad (\dot{\cdot}) = \frac{d}{dt}(\cdot)
\]

(9)

The solution of the unperturbed problem (\(\varepsilon = 0 \)) is

\[
x_0(t) = A_0\cos(t + \phi_0)
\]

(10)

where \(A_0 \) and \(\phi_0 \) are constants. We seek an exact solution of the perturbed problem using variation of parameters based on the amplitude-phase form of the solution \(x_0(t) \):

\[
x(t) = A(t)\cos(t + \phi(t)) \equiv A\cos\psi
\]

(11)
The assumption that x solves the sole equation (9) imposes one condition relating the two functions A, ϕ. Thus, we get to impose a second condition on A, ϕ. The second condition we impose on A and ϕ is one which guarantees
\[\dot{x}(t) = -A(t) \sin(t + \phi(t)) = -A \sin \psi, \tag{12} \]
that is, a condition which makes differentiation of x appear as if A and ϕ were constant. Explicitly, we are therefore imposing the condition
\[\frac{d}{dt} A \cos \psi = -A \sin \psi \tag{13} \]
Using (11)-(12) in (9), it is readily seen that
\[-\dot{A} \sin \psi - A \dot{\phi} \cos \psi = \varepsilon f(A \cos \psi, -A \sin \psi) \tag{14} \]
Expanding out the second condition (13) one gets
\[\dot{A} \cos \psi - \dot{\phi} A \sin \psi = 0 \tag{15} \]
Solving (14)-(15) for \dot{A} and $\dot{\phi}$ yields
\[\dot{A} = \varepsilon F_1(A, \phi, t) \equiv -\varepsilon \sin \psi f(A \cos \psi, -A \sin \psi) \tag{16} \]
\[\dot{\phi} = \varepsilon F_2(A, \phi, t) \equiv -\varepsilon \frac{1}{A} \cos \psi f(A \cos \psi, -A \sin \psi) \tag{17} \]
Clearly, F_k is 2π-periodic in t, thus (16)-(17) is in standard form.

Transformation of weakly nonlinear problems

Let
\[\dot{x} = A(t)x + \varepsilon g(x, t), \quad x(0) = x_0 \in \mathbb{R}^n \tag{18} \]
where $A(t) \in \mathbb{R}^{n \times n}$. This problem is said to be weakly nonlinear because the unperturbed problem
\[\dot{z} = A(t)z \tag{19} \]
is linear. The unperturbed problem has n linearly independent solutions $z_i(t), i = 1, \ldots, n$ from which a fundamental solution matrix
\[\Psi(t) = [z_1, \ldots, z_n] \tag{20} \]
can be formed. Furthermore, Ψ is invertible since the columns are independent. If we define y via
\[x = \Psi(t)y \tag{21} \]
and substitute (21) into (25) we get
\[\dot{x} = \dot{\Psi} y + \Psi \dot{y} = A \Psi y + \varepsilon g(\Psi y, t) \tag{22} \]
But, since $\dot{\Psi} = A \Psi$ and Ψ is invertible,
\[\dot{y} = \varepsilon \Psi^{-1}(t) g(\Psi y, t) \tag{23} \]
If all z_i and g are T-periodic in t, the latter system is in standard form.

Transformation of strongly nonlinear problems

Let
\[\dot{x} = f(x, t) + \varepsilon g(x, t, \varepsilon), \quad x(0) = x_0 \in \mathbb{R}^n \tag{24} \]
We say this is "strongly nonlinear" because the unperturbed problem is nonlinear. Assume the unperturbed problem
\[\dot{y} = f(y, t), \quad y(0) = Z \tag{25} \]
has a (explicitly) known solution

\[y = Y(t, Z) \]

(26)

We then seek a solution of the perturbed problem of the form

\[x = Y(t, z(t)) \]

(27)

where \(z(t) = (z_1(t), ..., z_n(t)) \) is some vector valued function. Substitution of this expression into (24) yields

\[\frac{\partial y}{\partial t} + \frac{\partial y}{\partial z} \frac{dz}{dt} = f(y, t) + \varepsilon g(y, t, \varepsilon) \]

(28)

where

\[\frac{\partial y}{\partial z} = \left[\frac{\partial Y_i}{\partial Z_j} \right]_{ij} \]

(29)

Since

\[\frac{\partial y}{\partial t} = f(y, t) \]

(30)

this simplifies to

\[\frac{\partial y}{\partial z} \frac{dz}{dt} = \varepsilon g(y, t, \varepsilon) \]

(31)

If \(\frac{\partial y}{\partial z} \) is nonsingular, then

\[\frac{dz}{dt} = \varepsilon \left(\frac{\partial y}{\partial z} \right)^{-1} g(y, t, \varepsilon) \]

(32)

may be in standard form, depending on \(f, g \).

Example A class of problems studied by Kuzmak and Luke is the perturbed hamiltonian problem

\[\ddot{x} + g(x) = \varepsilon f(x, \dot{x}) \]

(33)

This problem can be posed as the system

\[\dot{x}_1 = x_2 \]

(34)

\[\dot{x}_2 = -g(x_1) + \varepsilon f(x_1, x_2) \]

(35)

The leading problem

\[\dot{y}_1 = y_2 \]

(36)

\[\dot{y}_2 = -g(y_1) \]

(37)

is integrable. This system is Hamiltonian with the Hamiltonian \(H(y_1, \dot{y}_1) \) constant and equal to the energy \(E \)

\[H(y_1, \dot{y}_1) = E = \frac{1}{2} \dot{y}_1^2 + V(y_1) \]

(38)

Thus, the solution is given implicitly by

\[t - \phi = \int_{0}^{y_1} \frac{ds}{\sqrt{2(E - V(s))}} \]

(39)

Depending on \(g \) and the initial conditions, the solution \(y_1(t) \) will be periodic with period \(T \). We restrict our attention to these cases.

Specifying initial conditions for \((y_1, y_2) \) is equivalent to specifying the values of the constants \(E \) and \(\phi \). Thus, if the integral in (39) can be evaluated and inverted there are functions \(Y_1, Y_2 \) such that

\[y_1(t) = Y_1(t, E, \phi) \]

(40)

\[y_2(t) = Y_2(t, E, \phi) \]

(41)
Moreover, the period of y_j (in t) T is a function of E, i.e. there exists a function \bar{T} such that $T = \bar{T}(E)$. Explicitly,

$$T = \int_{C(E)} \frac{ds}{\sqrt{2(E - V(s))}}$$ (42)

where $C(E)$ is the closed curve in the (y_1, y_2)-plane corresponding to the periodic orbit with energy E.

Since this problem is strongly nonlinear, the methods of the previous section should apply. Here $Z = (E, \phi)$. Thus, we now impose a time dependence on Z to transform the model to standard form. In particular,

$$x_1(t) = Y_1(t, E(t), \phi(t))$$ (43)
$$x_2(t) = Y_2(t, E(t), \phi(t))$$ (44)

Thus,

$$\dot{x}_1(t) = \frac{\partial Y_1}{\partial t} + \frac{\partial Y_1}{\partial E} \dot{E} + \frac{\partial Y_1}{\partial \phi} \dot{\phi} = Y_2$$ (45)
$$\dot{x}_2(t) = \frac{\partial Y_2}{\partial t} + \frac{\partial Y_2}{\partial E} \dot{E} + \frac{\partial Y_2}{\partial \phi} \dot{\phi} = -g(Y_1) + \varepsilon f(Y_1, Y_2)$$ (46)

Using the fact that (Y_1, Y_2) solves the leading problem this reduces to

$$\frac{\partial Y_1}{\partial E} \dot{E} + \frac{\partial Y_1}{\partial \phi} \dot{\phi} = 0$$ (47)
$$\frac{\partial Y_2}{\partial E} \dot{E} + \frac{\partial Y_2}{\partial \phi} \dot{\phi} = \varepsilon f(Y_1, Y_2, \dot{t})$$ (48)

Solving these for \dot{E} and $\dot{\phi}$ it is clear there are functions F_1 and F_2 such that

$$\dot{E} = F_1(E, \phi, t)$$ (49)
$$\dot{\phi} = F_2(E, \phi, t)$$ (50)

However, recall that Y_k are periodic in t but have a period $T = \bar{T}(E)$. That is, (49)-(50) are not in standard form since the functions F_k do not have a fixed period (2π). This example illustrates that not all variation of parameter based transformations of oscillatory problems will yield a standard form. Here, the method of averaging cannot be applied to (49)-(50). All is not lost, however. There are different ways to transform perturbed Hamiltonian problems to standard form using “canonical” transformations. In particular, the choice of “action” J rather than E essentially solves the dilemma. Action is defined as

$$J = J(E) = \int_{C(E)} \sqrt{2(E - V(s))} ,$$ (51)

is a function of E and geometrically is the area enclosed by the periodic orbit. It is a long story, but by introducing an “angle” variable $Q = E'(J)t$, it can be shown that equations for (J, Q) analogous to (49)-(50) are in fact in standard form.

1.2 Averaging Examples

Van der Pol Equation

$$\ddot{x} + \varepsilon(x^2 - 1)\dot{x} + x = 0$$ (52)

Transformation to standard form via

$$x(t) = A(t)\cos(\psi) \quad , \quad \dot{\psi} = t + \phi(t)$$ (53)
$$\dot{x}(t) = -A(t)\sin(\psi)$$ (54)
Yields the standard form:

\[\dot{A} = \varepsilon \sin(\psi)(1 - A^2 \cos^2(\psi))(A \sin(\psi)) \]
(55)

\[\dot{\phi} = \varepsilon \frac{1}{A} \cos(\psi)(1 - A^2 \cos^2(\psi))(A \sin(\psi)) \]
(56)

Define the average notation

\[< \ast > = \frac{1}{2\pi} \int_0^{2\pi} \ast dt \]
(57)

and noting

\[< \sin^2(\psi) > = \frac{1}{2} \quad < \sin(\psi) \cos(\psi) > \]
\[< \sin^2(\psi) \cos^2(\psi) > = \frac{1}{8} \quad < \sin(\psi) \cos^3(\psi) > = 0 \]
(58)

we obtain the averaged equations

\[\dot{\hat{A}} = \varepsilon \frac{1}{8} \hat{A} (4 - \hat{A}^2) \]
(59)

\[\dot{\hat{\phi}} = 0 \]
(60)

The solution of these equations will of course depend on initial conditions for \(A(0), \phi(0) \). But notice if \(\hat{A}(0) = 2, \hat{A}(t) = 2 \) for all \(t \). Since \(A = \hat{A} \) for \(t = O(\varepsilon^{-1}) \), we obtain an asymptotic approximation to the limit cycle of the original problem, namely,

\[x(t) \sim 2 \cos(t) \quad t = O(\varepsilon^{-1}) \]
(61)

Moreover, from the sign of the derivative \(\dot{\hat{A}} \) for \(\hat{A} > 2 \) and \(\hat{A} < 2 \) we observe the limit cycle is stable. Though technically we have only found an asymptotic approximation the limit cycle, the use of averaging in this manner can be formalized to proving the existence of limit cycles for sufficiently small \(\varepsilon \).

Mathieu Equation

\[\ddot{x} + (1 + 2\varepsilon \cos(2t)) x = 0 \quad x(0) = a \quad \dot{x}(0) = 0 \]
(62)

This equation models oscillators that are subject to frequency modulation. Note that since the frequency \(\omega^2 = (1 + 2\varepsilon \cos(2t)) \) is not a function of a slow time \(\tilde{t} = \varepsilon t \), we cannot use the multiple scale procedures previously discussed.

Normally one might use the amplitude-phase forms

\[x(t) = A(t) \cos(\psi) \quad , \quad \dot{\psi} = t + \phi(t) \]
(63)

\[\dot{x}(t) = -A(t) \sin(\psi) \]
(64)

to transform the equation to a system in standard form. Here, we use the alternate form

\[x(t) = y_1(t) \cos(t) + y_2(t) \sin(t) \quad , \]
(65)

\[\dot{x}(t) = -y_1(t) \sin(t) + y_2(t) \cos(t) \]
(66)

To transform the system to standard form, substitute (65) into (62) to obtain one equation for \(\dot{y}_1 \) and \(\dot{y}_2 \). A second equation is obtained by requiring the time derivative of the right side of (65) to equal the right side of (66). Solving for \(\dot{y}_1 \) and \(\dot{y}_2 \) we obtain the standard form:

\[\dot{y}_1 = 2\varepsilon \sin(t) \cos(2t)(y_1 \cos(t) + y_2 \sin(t)) \quad y_1(0) = a \]
(67)

\[\dot{y}_2 = 2\varepsilon \cos(t) \cos(2t)(y_1 \cos(t) + y_2 \sin(t)) \quad y_2(0) = 0 \]
(68)

The averaged equations are then

\[\dot{\hat{y}}_1 = \frac{1}{2} \hat{y}_2 \quad \hat{y}_1(0) = a \]
(69)

\[\dot{\hat{y}}_2 = -\frac{1}{2} \hat{y}_1 \quad \hat{y}_2(0) = 0 \]
(70)
Solving these one finds
\[\hat{y}_1(t) = \cosh(\varepsilon t) , \quad \hat{y}_2(t) = -\sinh(\varepsilon t) \] (71)
so that
\[x(t) = \hat{y}_1(t) \cos(t) + \hat{y}_2(t) \sin(t) + O(\varepsilon) \] (72)
for \(t = O(\varepsilon^{-1}) \).

1.3 An Averaging Theorem

There are many many averaging theorems. Here we state and prove one taken from Verhulst (1985). First, let
\[\dot{x} = \varepsilon f(x,t) + \varepsilon^2 g(x,t,\varepsilon) , \quad x(0) = x_0 \in \mathbb{R}^n \] (73)
\[\dot{y} = \varepsilon \hat{f}(y) , \quad y(0) = x_0 \in \mathbb{R}^n \] (74)
where \(f \) is \(T \)-periodic in \(t \) (and \(T \) is \(\varepsilon \)-independent) and
\[\hat{f}(y) = \frac{1}{T} \int_0^T f(x,s) \, ds \] (75)

Theorem Let \(x, y, x_0 \in D \subset \mathbb{R}^n \), \(t \geq 0 \) and assume

(A1) \(f, g, \frac{\partial f}{\partial x} \) are defined, continuous and bounded by an \(\varepsilon \)-independent constant \(M \) on \(D \times \mathbb{R}^+ \),

(A2) \(f \) is Lipschitz continuous for \(x \in D \),

(A3) \(y(t) \) is contained in a proper subset of \(D \).

Then, \(x(t) - y(t) = O(\varepsilon) \) for \(t = O(\varepsilon^{-1}) \).

Proof: Define
\[u(x,t) = \int_0^t (f(x,s) - \hat{f}(x)) \, ds \] (76)
Since \(u \) is \(T \)-periodic in \(t \)
\[\| u(x,t) \| \leq \max_{t \in [0,T]} \| \int_0^T f(x,s) \, ds - \int_0^T \hat{f}(x) \, ds \| \] (77)
\[\leq \max_{t \in [0,T]} \| \int_0^T f(x,s) \, ds \| + \max_{t \in [0,T]} \| \int_0^T \hat{f}(x) \, ds \| \] (78)
\[\leq 2TM \] (79)
making \(u \) uniformly bounded on \(D \times \mathbb{R}^+ \).

Next, define the “near-identity” transformation
\[x(t) = z(t) + \varepsilon u(z(t),t) \] (80)
Since \(\| u(x,t) \| \leq 2MT \) uniformly, \(x(t) - z(t) = O(\varepsilon) \). Now note,
\[\dot{x} = \dot{z} + \varepsilon u_x(z,t) + \varepsilon u_t(z,t) \dot{z} = \varepsilon f(z + \varepsilon u,t) + \varepsilon^2 g(z + \varepsilon u, t, \varepsilon) \] (81)
But, since \(u_t(z,t) = f(z,t) - \hat{f}(z) \), we find
\[(1 + \varepsilon u_x) \dot{z} = \varepsilon \hat{f} + \varepsilon R \] (82)
where the remainder term R is

$$R = f(z + \varepsilon u, t) - f(z, t) + \varepsilon g(z + \varepsilon u, t, \varepsilon)$$ \hspace{1cm} (83)$$

Since f_x is uniformly bounded, so is u_x and

$$(I + \varepsilon u_x)^{-1} = I - \varepsilon u_x + \varepsilon^2 S$$ \hspace{1cm} (84)$$

where S is uniformly bounded on $\Omega = D \times \mathbb{R}^+$. Thus,

$$\dot{z} = \varepsilon(I - \varepsilon u_x + \varepsilon^2 S)(\hat{f} + R) = \varepsilon \hat{f}(z) + \varepsilon P$$ \hspace{1cm} (85)$$

where

$$P = R + \varepsilon(\hat{f} + R)(\varepsilon S - u_x)$$ \hspace{1cm} (86)$$

We wish to show $P = O(\varepsilon)$ uniformly on Ω. Since f is Lipschitz continuous and u is bounded, there is a constant L such that

$$\| f(z + \varepsilon u, t) - f(z, t) \| \leq \varepsilon L \| u \| \leq 2\varepsilon LMT$$ \hspace{1cm} (87)$$

Thus,

$$\| R \| \leq \varepsilon(2LMT + M)$$ \hspace{1cm} (88)$$

from which we deduce $R = O(\varepsilon)$ uniformly on Ω. Since S and u_x are uniformly bounded by some constant $K \in \mathbb{R}$, there is some constant C for sufficiently small ε such that

$$\| P \| \leq \varepsilon(2LMT + M) + \varepsilon(\varepsilon + 1)K(MT + 2LMT) \leq \varepsilon C$$ \hspace{1cm} (89)$$

showing $P = O(\varepsilon)$ uniformly on Ω. Letting $\tilde{t} = \varepsilon t$, we then see that the equation for \dot{z} can be written

$$\frac{d\dot{z}}{d\tilde{t}} = \hat{f}(z) + P$$ \hspace{1cm} (90)$$

Using another theorem in Verhulst (1985), any system of the form (90) with $z(0) = x_0$ with $P = O(\varepsilon)$ uniformly on Ω must then have $\| z - y \| = O(\varepsilon)$ for $\tilde{t} = O(1)$. END