1 Matching: Theory, Definition and Issues

Let y{z,€) be at least continuous on D x I where Let D = [0,1], I = (0,r). The function
.y(z,€) should be viewed as a.solution.of the algebraic problem ..o

fl@ye)=0 o M
or a boundary-value problem like
d? d
s +a(@) 2 +4z) = fe), @)
y(0,e) = A (3)
y(l,e) = B (4)

Now, suppose that there are y,(z) such that the outer expansion

y ~ yol(x) + e (z) + 'ya(w) + - - (5)

is uniformly valid on [Z, 1] and Z > 0. This expression is valid for z fixed in the limit ¢ — 0.

Now define
x

Y(X: 6) = y(:r,e) ’ = E (6)
suppose there exist Y;(X) such that the inner expansion
Y ~ Y(X) 4 eVi{X) + 2Yo(X) + - - - (7)

uniformly on [0, X], for some X < 1/r. as € = 0F. This expression is valid for X fixed in
the limit € — 0%. The fixed x (outer) and fixed X (inner) limiting processes are depicted in
Figure 1.

For clarity we let D,(Z) and 1;{X) denote the regions of uniform validity for the outer
and inner expansions, respectively:

Dy(z) = {(z,e):z€[z,1], e€l} (8)
Di(X) = {(ze):z€[0,Xe] e €T} (9)

Though, as defined, D,(Z) and D;(X) depend on the (e-independent) fixed values Z and X,
these values will be seen to be irrelevant to the latter discussions regarding overlap regions
and matching. Therefore we will denote these regions simply as D, and D;. Extension
theorems are theorems which extend the region of uniformity of asymptotic statements like
(5). One early (and relatively simple) theorem is due to Kaplan (1967)!:

Theorem 1. Let D = [0,1], I = (0,7) and y(z,&) be continuous on D x I. Also, let yo(z)
be some continuous function on (0,1] such that

lim [y(z,€) — yo(x)] =0 (10)
e—=0t

untformly on [Z,1], for every T > 0. Then there exists a function 0 < §(¢) K 1 such thal
lim [y(z, €) — go(x)] = 0 (11)
e—0+t

uniformly on [§(¢), 1].
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Figure 1: Depiction of outer (a) and inner (b) limiting processes
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Figure 2: Extended domain of validity for leading outer expansion



A simple example of a function satisfying the hypothesis is:

yze)=z+e +e |, ple)=2 (12)

--since-y(x, &} -~-yo(x) +-0(1) uniformly on [a_: 1] and-hence-(10)-is true: i i i

" What thls theorem does is effectively extend the region of uniform validity D, in Figure lato
one like D, in Figure 2. To rigorously define Da, intermediate variables need to be introduced.
Let n(¢) be any function with 0 < 77(¢) <« 1. We define the intermediate variable z, by

z = n(e)zy (13)
Then, the conclusion of the theorem may be stated
[y(nq,€) — yo(nzy)] =0 (14)

m
e—+0tzy fized

uniformly on z,, € [Z,, 1], for all  with § = O(5). Generally, when introducing intermediate

variables we view 1 as satisfying § <« n < 1, though to clearly define D, we can set 7 equal
todor 1:

Dy = {(z,€) : x € [Z,0(e), 1}, € I} (15)
For the example in (12}, we have for some intermediate variable z,:
y(z,&) — (@) =e "5 +e=o(1) (16)

uniformly on [Z,, 1] providing Z, > 0 and & < 7. For instance, one could choose §{¢) = £!/2
in the theorem. N

In an analogous fashion, one can construct an extended domain of validity D; for the
inner expansion (7) noting the inner variable

Ly

X = - (17)
For some (z,€) near (0,0} the non-extended domains D, and D; do not overlap - see Figure
3a. Similarly, one can have nonoverlapping extended domains (Figure 3b) and overlapping
extended domains (Figure 3¢). If there is an overlapping extended domain, there are func-
tions 7;(e) and n,(g) such that for any intermediate variable z,, with 7;(€) < n{e) < n,(€)
both the inner and outer expansions are uniformly valid. That is to say, given any % with
7i(e)} € n(e) « n,(e), there is an e-independent interval I, such that both

— — 1
s—>0+,:1:.-l:1fia:ed [y(nm,,,e) yo(an)] 0 ( 8)
Ly
R "R eiant/s p— 1
£~+B+,2I;1fiwed [y(nm,,,e) 0 ( £ )] 0 ( 9)
uniformly on =, € I, z, > 0. Subtracting these expressions we obtain a matching condition:
]
= 2
E—+U+,ml;,nfimed [yo(nxn) },D ( £ )] 0 ( 0)

And, if y5(0*) and Y5(00) exist, since £ € n < 1,
Jim go(z) = lim Yo(X) (21)

1see Eckhaus (1979) for more theorems



which is called the Prandtl matching condition. If (20) can be satisfied, then one would say
that the leading outer expansion y,(x) can be matched to the leading inner expansion ¥3(X)
on an overlap domain

ng{(m,e) mﬂmm efmm(e)«n(s) <<n¢,(e)} e (22) .

At this stage, we need to make a few points. Firstly, y(0%) or Y5(co) may not exist in
which case the inner and outer expansions cannot be matched to leading-order using the
Prandt! matching condition. However, it may still be possible to match the expansions by
demonstrating the existence of an overlap domain for which (20) is satisfied. Secondly, even
if the matching condition (20) cannot be satisfied that does not preclude the possibility of a
P term outer expansion matching a () term inner expansion. That is to say, there may be
some overlap domain where

—)0+.zf, fized I:ZE Yn mfﬂ?) Zs"Y (wnn)] =0 (23)

n=0

At this point we are in a position to define matching.

Definition 1. Choose and fiz z, = 5 €R and let R be any nonnegative integer. We say
that the outer and inner ezpansions defined in (5)-(7) match to O(e®) on a common domain
of validity Dg(z,) if there exist functions m and 7o with m < n2 and integers P, Q) such
that

im M};Q - lim [Zn“ﬂ " yn (@) = En—o ¥ (Egﬂ)] -0 (24)
=30t ,on fized £ e-+0t 2y fized eR
for any function n satisfying m < n <K 72 and
Dr(zy) = {(z,€) : 7y = 20, m(€) < n(e) K 12(e)} (25)
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Figure 3: Depiction of (a) nonoverlapping nonextended domains, (b} nonoverlapping extended domains and
(¢) overlapping extended domaing 5



We conclude with a few remarks:

1) General theorems showing the existence of overlap domains have not been found (Lager-

_strom 1988). In practice, the existence of overlap domains where inner and outer soiu—_____ o

o tzons can be matched is done on a case by case ba.sts -

2) For boundary value problems where the method of matched asymptotlcs is apphed
matching conditions are used to find integration constants occurring in the inner ex-
pansion. Typically, inner and outer expansions can be matched only if those constants
are chosen equal to specific values.

3) Prandtl matching corresponds to leading-order matching with P = @Q = R = 0.
4) In some problems, P and @ may not be known apriori. Moreover, P may not equal Q).

5) Some expansions cannot be matched. The matching defined in (24) is with respect to
the guage functions ¢, (€) = ™, n > 0. Clearly, some functions y may have more general

outer expansions:
’y(.'B, E) ~ Z ¢n(6)yn(m) (26)
n=0

Indeed, the inner variable could be defined in a more general way, X = z/6(c),0 < § <
1, and the inner expansion may be with respect to different guage functions. These
sorts of generalizations are not normally considered.

1.1 Model Problem

We consider a single example which illustrates all of the features discussed in the previous
section. We will use the following facts throughout the discussion: For z > 0

(27)

llog(e)| < d = e <e™ VYn>0 (28)
(29)

= O,(llog(e)) = €™° = 0,(1) (30

)
)
z < ellogle)] = e <™ Yn>0 (32)
)

where ¢ = O,(%) means ¢ = O(¢) and ¥ = O(¢).

Specifically we will consider matching of inner and outer expansions of the function

{ear [—(1 - M)%] — eap [—(1 B} e

1
y(t, 5) = m



which is the solution of the singular initial value problem

ety +y=0 ,

The first two terms of the outer expansion

y(t,€) ~ po(t) + ey (t) + ¥at) +- -

can easily be determined from (34). Fixing ¢ and expanding in € one finds

— 2 —t—et+0(e?) _ —t/e+t+0(e)
y=(1+2¢+ 0(*)) |e e —

from which we deduce
wt)y=e"* , ()= (21"
Similarly, to compute the inner expansion

t
y(t:E) =Y(T:E) N%(T)+55"1(T)+E2Y2(T)+ ) T=E
reexpress (34) in terms of T', fix T and then expand in e:
Y = (142 + O(e?)) [T~ T+0) _ ¢ TeT+0)]

From this one finds:
h(T=1-¢T , (T =@2-T)-2+Te™"

(35)

(37)

(38)

(39)

(40)

(41)

(42)

Before we find the overlap domains where the outer and inner expansions match to O(1) and

O(e), we will discuss how these expansions would arise had we not known the
apriort.
By substituting the expansion (37) into (35) we obtain the problems:
O(1) : w+yw=0
OF) : hty=-u
whose general solutions are (for ag, by constant)

w(t) = ae™

n(t) = (bo— aot)e™

Clearly, ap cannot be chosen so that yo(f) satisfy both initial conditions.
surmise (postulate) that the true solution has layer at ¢ = 0.

exact solution

(43)
(44)

(45)
(46)

Therefore, we

e



In terms of Y and T the initial value problem (35)-(36) can be written

Y'+Y +eY =0 (47)

from which we obtain the inner problems
o) : Y+Y=0 , %(0=0 , Y(0)=1 (49)
O) : YW+Y/=-Yy , "i(0)=0 , Y{(0}=0 (50)

whose solutions are that given in (42). In contrast to boundary value problems, the unknown
constants of integration to be determined from matching are part of the outer solution. If
we apply Prandt! matching to match 3 and ¥ we find
lim () = ag = 1= lim ¥,(7T) (51)
Troo

t—=0t
and recover yp(t) in (39).

Demonstrating extended outer domains to O(1)
To find an extended domain for the outer expansion one assumes 7{¢) < 1 and seeks an
m{(e) such that n,(e) <« nfe) implies

E’*M}:iérnfimed [y(ntn, €) — yo(nts)] = 0 (52)

for the intermediate variable :
ty = -';'; >0 (53)

Given (38), this limit holds providing e~*"/¢ « 1. To assure this, we choose 1:(€) = ellog(e)].
Now let the notation ¢ <= 1 mean that either ¢ < ¢y or ¢ = O4(¢). Then we can conclude
that D, will be an extended domain for the outer expansion so long as 7 satisfies

mpo = ellogle)] €« n k=1 (54)

Though each 7 defines a different region in the (z, €)-plane for ¢, € I, all that really matters
for the limit to vanish is that 7 satisfy (54). So it is common practice to say that the extended
domain for the single term outer expansion yo(t). "is” (54).

Demonstrating extended outer domains to O(g)
To find the extended domain for the two term outer expansion yo(t) + ey1(t) one assumes
7n(€) < 1 and seeks an 71,1(¢} such that n,;(¢) < n(¢) implies

e-+0TF,ty fized E

Again from (38), we find that if 7 satisfies (54) the above limit holds. That is to say the
choice 1;; = M, works. If we continue this process of extending the domain in an R term
outer expansion to find 7, g it is often the case that 11,z < 71,r+1 since adding more terms
to the limit places more restrictions on 7. For this particular example the extended outer
domains at O(1) and O(¢) turned out to be the same.

8



Demonstrating extended inner domains to O(1) and O(e)
To find an extended domain for the single term inner expansion one assumes € < n{e) and

seeks an 7]2(5) such that n < 172(6) 1mphes
olm e =Y/l =0 (66)
Again from (38) it is easy to verify that the extended domain for the single term inner
expansion is defined by

EL=N Ko E 1 (57)

Finding the extended inner domain to O(g) is more delicate. In terms of the intermediate
variables

e—tin/e 2
y(n?,e) _ _i_ - gf - .’Et e~t/e 19 — 2e™t/E L O(n) + O ( ) +0O(e) (58)

and in terms of the intermediate variables

e~ tnn/e
l%+YimH£M=lw—mﬂt _Et e—tﬂn/€+2 26—tﬁ’7/5 (59)
£ £ € £
Subtracting these two expressions we see that
e-0% by fized €

provided 7%/e < 1. That is to say the choice 7, = €"/? ensures the limit vanishes and the
extended inner domain to O(g) is

e<=n<mpy=¢? (61)

Here we note the extended domain to O(e) is "smaller” than the domain to O(1), i.e. ny,; <«
M2,0-

Demonstrating overlap to O(1) and O(g)
Considering the previous discussions it is clear to see that the overlap domains to O(1) and
O(e) are, respectively,

Mo < 1<K (62)
m1 K€ <K, (63)
or
ellogle)] € nx1 (64)
ellogle)] < n<e? (65)

If 7 satisfies these asymptotic relations, the outer and inner expansions match to O(1) and
O(g), respectively. Explicitly, if n satisfies (62) then

om0 (nt) = Yo(nta/2)] = 0 (66)



And, if i satisfies the more stringent requirement (63)

i 2e(rt) + et (nte) — Yo(mto/e) — eVi(nta/e)] _ (67)
SOty fimed e

If the exact solution ¥ was not known apriori then one would choose ‘ap in the incomplete
outer solution yo(t) = ape™* and find 1, g, 72,0 so that (66) is satisfied.
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