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4.4 Two Scale Expansions for Strictly Nonlinear
Oscillators

In this section we generalize the ideas of two scale expansions to a stricily
nenlinear second order equation with solutions that are slowly modulated
oscillations. Thus, as ¢ — 0 the equation remains nonlinear.
The basic technique is due to Kuzmak [4.6], who studies a special form
of
ij + g(y: i) + fh(y's' 3-}, i) =0, (441)
where as usual, ' = d/dl,1 = e and 0 < ¢ < 1. Here h and. g are given
functions, analytic with respect to each of their arguments. We assume h
to be odd in ¥ to model dissipation; Kuzmak assumes A to be proportional

to ¥. The only other restriction is that for ¢ = 0, the reduced nonlinear
oscillator

¥+ g(y, 0y=10 (44:2)

has periodic solutions. This condition is satisfied whenever the potential
V(y,0) = fgy ¢(s, 0)ds is concave in some interval y; < y < y3, and we
restrict attention to oscillations in this interval.

Kuzmak works out the O(1) solution partially; the equation of the slowly
varying phase is not derived. In [4.29], Luke studies nonlinear nearly pe-
riodic dispersive waves and extends Kuzmak’s results to higher order.
Mathematically, the solution for such waves essentially reduces to (4.4.1)
with A = 0, and Luke states that in this case the phase is constant. Bour-
land and Haberman [4.30] give a careful analysis of (4.4.1) and derive the
equation governing the slowly varying phase. In many applications includ-
ing that of sustained resonance, to be discussed in Sec. 5.3, a more general
version of {4.4.1) arises. The damping and restoring force terms also depend

on n slowly varying quantities p;, i = 1,...,n with the p; governed by n
first order equations of the form dp;/dt = O(e). This problem is discussed
in [4.31].

Here we restrict attention to the simple form (4.4.1) that suffices to
llustrate all the essential features. We develop the two scale expansion of
the solution based primarily on the approach in [4.30]. A specific example
is then worked out in detail.

4.4.1 General Theory

Ezpension procedure

We assume that the solution of (4.4.1) can be expressed in the following
two scale form

y(t; ) = YT, 1) = Yo(tt, 1) + eVi(tt, 1) + Of?), (4.4.3)

324
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" where Eq(1) is the slowly varying energy and V is the potential defined by

Yo
V(Y. d) = jn o(n, Ddn. (4.4.86)

We next integrate (4.4.8a) and invert the result to express Yp in the form
Yo(it,1) = f(11 + Ao(d), Boll),wo(@), 1), (4.4.9)

where Ag(1) is a slowly varying phase-shift that arises as an additive inte-
gration “constant” to 2¥. At this point it is useful to note that there is no

phase-shift ¢u(f) in the definition of ¢¥. In fact, we see that the two un-
knowns Ay and ¢y appear in the solution only in the combination Ag + ¢
so one or the other of these two constants may be ignored. In [4.30] Ag is
set equal to zero and ¢y is retained, whereas-in {4.29] the converse choice
is made.

.Since Yy is periodic with respect.to it the curves in the Yy, (8Ys/8t1)-
plane for fixed { (hence with Eg and wo also fixed) are ovals that are
symmetric with respect to the Yy axis as sketched in Figure 4.4.1. Note
that since 1 is held fixed, the closed curve in Figure 4.4.1 is not an actual
integral curve of (4.4.8a). However, we expect Ey, wp and 1 to change only
by O(e¢) after one complete cycle in this “phase-plane”.

Given initial values for y and ¥ at ¢ =  we have, once wy(Ep) is de-
termined, the initial values Yo(¢o(0), 0) and (8Ya(do(0),0)/81*), which
specify a point, say the point marked O, on the oval in Figure 4.4.1. The
details of this calculation are discussed at the end of this section.

Figure 4.4.1 “Phase-Plane” of Yj, -g%f for Fixed Ep, wo and {
With no loss of generality we choose ¢g(0) so that t+ = 0 when
Yo first equals Yo_,,. Note ¢o(0) < 0. Thus, Y(0, —edo(0)) = Yo....
(BY5(0, —e¢o(0))/8t+) = 0, and Yy is an even function of {+. Moreover,
the expression for f(t%, Ey,we,1) is obtained by inversion.from (Note. that
Ag = O)

_ pYtetD dy
+ o~ 4.
=) /Yomi.w»,i) +v/2[Eo(@) - V(n, 1)} (4:4.10)

where the * signs correspond to the signs of 8Yy/att.
The period of oscillation P is then twice the integral from Yo, to Yo,.,,
i.e

1

o) d¥o (4.4.11)

P(Eo,wa,1) = o /y.,,,,i.{so,i) VRIE(D) - V(Ye, D]

At this stage, P is a function of Ey, wq _and {; once E'g(f) and wo(f) are
defined we will have P as a function of 1. In [4.29] Luke points out that
unless P i1s a constant we lose uniformity for ¢ large. To see this, let us use
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construct the general sojution for ¥;. Unfortunately, this form of Y; is not
convenient for the calculation of the equation governing ¢g. We will follow
the approach used by Bourland and Haberman in [4.30].

In order to construct a second linearly independent solution of L(Y;) = 0
depending on t*, Eq and { we begin by writing (4.4.7a) in the form

(En,t) tt, Eg,1) + g(p(t*, Eo,1),1) = 0, {4.4.18)

a += (
where we have used (4.4.15) to express wg in terms of Ey and 1. Now, taking
the partial derivative of {4.4.18) with respect to Ej, holding t+ and 1 fixed,
gives

o0 dp , 0° dp op
2Q6E0 Bt+:! Q at+:r (é“k“;)‘*‘gy (pri) B—E; “0?

op \ _ o0 8%p
L (BEQ) =205 2 F (4.4.19)

Next we compute L{t+ £& ); we have

Op , & + 0p p

2
i Ay (ﬂ) = o2 22 (4.4.20)

att o’
because L(dp/dt*) = 0. Using (4.4.19) and (4.4.20) we see that
% B0 o (2) s (e

L (Qazo tont ar) T\ ) tam i \Uar )T

Therefore,

q(t"',Eg,i) & (Eg,t) (t+ Eo,i)-’r o0

.8 N
3 (Eu,t)t’f-éi%(t*,fﬂo,t)

(4.4.21)
is a second homogeneous solution (L{g) = 0) that is even in 1. To ascertain
that (8p/dtt) and g are linearly independent we construct the Wronskian

Op 8 9p

ait oir ot

_op 8%p a9 8p . 89 ., &%
att (Q————BEuaﬁ MR T T T

8%p p o9 ., p

W =
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Note that in evaluating r;,, we have used wo(l) = Q(FEg(f),?) and
Yo(tt,) = p(t*, Ey(f),1). In particular, the bracketed term on the
right-hand side of (4.4.28b) is just (8%Yo/8it81).

The particular solution of (4.4.7b) due to ry,,,, follows from (4.4.20) in
the form

Yipeen(tt, B0, 1) = — =t = (4.4.29a)

and we use variation of parameters to compute the odd particular solution
in-the form:

tt Eo, ) [T ) i
ylPodd(t Eﬂri) - q_('_('EoLi)) rlnaa(saEOri)'E%(ssED:t)ds
? 1]
1 '*
+
Q(Eu ) 6t+( ] )'/D r1.9a(5 Eo, 1)g(s, Eo,T)ds. (4.4.29b)

The general solution for Yy :then has the form
- - - O - - -
R N A1(t)-5§(t+,Eu,t) + By(De(t*, Eo, 1)
+ ylpuad(t+ ¥ ED: i) + ylpueu(t-l- r Eﬂr i)' (4‘4'30)

In order that ¥; be a periodic function of tt, its even and odd parts
must individually be periodic. Consider first the even part of ¥y, i.e., Big +
Yipown- Using (4.4.21) for g, (4.4.29a) for yy,,.., and noting that (8p/6t™)
is periodic in i1, we see that the mixed secular terms are eliminated by
setting

- 1 w;(f)
B2 (B, T) - _ o, 4.4.31
1()6E[]( 0 ) Q(Eu,t) ( )
and (4.4.30) reduces to
v - .. 0 -
Yt 1) = m(t, Eo 1) = Ai(d) ”§¢£+ (t+, Bo, 1)
+ w} ap (t+l Eﬂ! i) + ylp,dd- (4.4-32)

(9Q/8Ey) 8E,

If (3Q2/3Eq) # 0, (4.4.31) determines B; once Ey and ¢ have been calcu-
lated (Note: w; = (d¢g/dl)). Thus, (4.4.31) makes no contribution towards
the determination of the two unknowns (Eyg, ¢g) in the O(1) solution unless
{00/3E) = 0, in which case we must set w; = (.

The odd part of y; consists of A;(dp/dt*) + wp, .., and since (Bp/Bt"‘)
is already periodic, we must require y;,_,, to be periodic by itself. We show
next that a necessary and sufficient condition for yy,,,, to be periodic is
that

P, '
/ rw(#,f:{,,i)%(ﬁ,%,i)dﬁ =0, (4.4.33)
0
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In general this is a nonlinear first-order equation for Ep and its solution
defines Eo(t) for a given Eq(0).
If & is linear in ¥, and does not depend on y, i.e., h = h()¥, (4.4.37)
simplifies further to the linear equation
dJ
= + k(@) = 0. (4.4.38)

This has the solution
i
J{(Eo, 1) = J(Eo(0),0)exp(— / h(s)ds). (4.4.39)
o

Inverting (4.4.36b) then gives Eo().

If there is no dissipation (h = 0) we find J = constant. This is the gener-
alization (for a nonlinear oscillator) of the adiabatic invariant we computed
in Sec. 4.3.2 for the linear oscillator with slowly varying frequency.

Weakly nonlinear problem: g = p(1)y

It is instructive to specialize the foregoing results to the case where g is
linear in y, i.e., ¢ = p*(f)y with u(t) # O prescribed. For the time being
we leave h in its general form.

Equation (4.4.7a) becomes

. 8%Yp

Wi —5 iy p?Ye =0 {4.4.40)
with solution
f@t, Eg,wg, 1) = = iEﬂ cos ;Ii-t+. {4.4.41)
o

Thus, Yo,_,, = v2Ep/p and Yo, = —v2Ep/u. If we choose Py = 2, the
equation (4.4.11) for the period becomes

ViEs/n
r=w j 4w (4.4.42)
—VIEafp V 2Eq — Yu #2 H
and this gives wp = p. Thus, (4.4.41) implies
p(tt, Eo, 1) = 2E costt. (4.4.43)
T

We note that the two linearly independent solutions of L(Y:) = 0, i.e.,
(8p/dtY) = —(VZEp/p)sintt and ¢ = p(Op/8E.) = (1/V/2Eq) costt,
are both periodic in this case.

Since (82/8Fp) = 0, (4.4.31) gives wy(I) = 0, i.e,, ¢o(I) = ¢o(0) =
constant. The second periodicity condition (4.4.35) gives

2% e
d (EO)—- ——1-/ h(z—E—gcoss,— 2Egsius,f) 25 sin sds = 0.
di 27 Jo [ H
(4.4.44)
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derived more directly. This derivation is based on the observation made in
[4.32] that (4.4.1) implies an exact condition for the action.

If we regard y = Y(t%,%;¢) with = ¢ and t* to be defined by (4.4.4)
exactly, we find that (4.4.1) becomes

8y - dw ay

5%y BY , 0%Y
+2{wo + ewy) o + A(Y, (wo + eul) 3t+ t)l +e 5 =0,
(4.4.49)

also exactly.
Let us now multiply (4.4.49) by (8Y/8t*) and integrate the result with
respect to tt from it = 0 to it = Py

P gty oy
2 + Or o+
(wu 4 ewl) A 31"" 3t+ — dl .[0 o(Y, t) d‘l
fdwo  dun /Pn ay \* . / 82Y Y

4e ( 7 Wy, e ) pr dt™ + 2e{wo + ewy) | wEE o et

P, Py 2

o ay ay i) d +4 5 Y Y + _
-I—E-/l; h(Y, (wu-{'-fwl)‘ét-—;“ +(~*5~“ )-é-t";"di [] 8t2 6t+ —dtt = (.

The first two terms are

1 . 9 oy . (P8 N
-2—(&!(] +EW1) -/; BTI;'— ((—9",_+) di , A W(V(Y,t))d’t ,
and vanish because Y is periodic in 1+ with period Po. The third and fourth
terms combine and upon dividing out an ¢ we find

P 2
° 3y
{we + fwz)/o (‘éﬁ) dit

Fo oy | oY +
+ A h(Y, (wQ + cwl) W at t) Bt di

dt

Po 52
Y &Y . _

For a solution of (4.4.4) that is periodic in t* with period Py, (4.4.50) is

an exact result.
Now if we expand Y as in (4.4.3), the O(1) and O(e) terms of the
expansion of {4.4.50) satisfy

d Po 1 8Y,
el —2 ) dtt
dt lw"j; (at+)

Yo 0t
f hopdit =0 {4.4.51)
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i}

Py Qi-l_ ?_}:1_ %di-!- = wp ]Po Qf} Byltm %dt‘[’
o oy otF oF o oy ot ot

_ le Py Bh( ) p ap
~ 89/0E 8y 6t+' BE.01+ it

o oh vy ayo

att (44 53c)

0 EZ = St =0 (4.4.53d)
ayl + Fo ayleven +

h ] dt+ 4.4.53
BQ/BE‘D / (p 92 Bﬁ : )BE ot (4.4.53¢)
Finally, since (8Y;/8t%) is even and (8Yy/8t%) is odd, the last term in
(4.4.52) vanishes. When the expressions in (4.4.53) are used to simplify
(4.4.52) we find

Py Fy 2
d ) M [ O Fp +w1/ (fﬂ) dt*
@ | 5076, Jy BiF OEe0t* A

- P 2
wh @ ap = ap 3P " ap ap
an/anf {h(”'ﬂ?a'z"I'”ana:+ ( P lgs it )aEa 8+

] 2
+ P pale nle [n—————a” ;o (—-a—p—)]}dﬁzo.

ay ot ) o+ OEq8tt ~ 8Ey \ att
(4.4.54)
This is just the linear homogeneous equation
Py 2 Y
i__ v ._i Q/ (_?.B_) dit
di | 09/0E, 8F, 0 ot
Wy 3 Po +
BQ/BEO 35 hip, Bt*‘ ,t) dt (4.4.55)
Using the notation (4.4‘36) for the action J and dissipation D gives
d JEu DEu _
i (QE;; wl) + O, wy =0, (4.4.56)

where Qp, = {(8Q/8E,y), Jg, = (8J/8Ep) and Dg, = (8D/8Eq). We can
compute 25, using the expression (4.4.15)

Q PB {/Yum.,(ﬂu.i) dYa }—2
Eg = - e
2 (Eody V2[Eo(t) — V(Yo,1)]

min
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where ag, @, fo and f are specified constants. Since 1+ = ¢p(0) and
1 =0att =0, (4.4.60a) and the expansion (4.4.3) for y give

Yo(¢0(0), 0) = ae (4.4.61a)
Y1(¢o(0), 0) = ). (4461b)
Similarly, using the expansion (4.4.5a) for ¥, we see that (4.4.60b) gives
wo(0 )gtyf (¢0(0),0) = Bo (4.4.62a)
6}"
o (0) L (40(0), 0) + w1(0) T2 (6(0),0) + -2 (9o(0),0) =
(4 4. 62b)

If we use the definition (4.4.16) for p, the initial condition (4.4.61a) for Yp
becomes

p{#a(0), Eo(0},0) = ap. (4.4.63a)
Similarly, (4.4.62a) has the form

Q(Eo(0), U) (¢u(0) Eo(0),0) = (4.4.63b)

These two algebraic equations deﬁne the two unknowns ¢o(0) and Ey(0)
in terms of the specified constants ay, Bo. With Eg(0) known, the solution
of (4.4.37) defines Ey(T). Using this En(f) in (4.4. 15) for Q(Eg(t) 1) and in
(4.4.16) for p(t*, Eo(1),1) specifies wo(t) and Yo(t,1) completely. In order
to complete the solution to O(1) we need to know w,(0) in order to specify

w1 (f) from {4.4.59). To evaluate w,(0) we consider the initial conditions to
O(c)

Using the now known expressmn for Yp{tt, t) and using (4.4.32) for ¥ in
(4.4.61b) and (4.4.62b) gives the following pair of linear algebraic equations
...for.A1(0) and-w;(0)

MO G2 G(0,0) + G S (6n(0), Bo(0).0)

= @1 = Yipoaa($0(0), Eo(0),0) (4.4.64a)

AJ(O)WU(O)%(%(OLO) + ﬁ;%g%),—o-)- [wn(e) 3E 8t+ (¢0(0), Eo,0)

BYQ aYp

+Q20( Ea(0),0) 53 (4o(0), 0)] B - =7 ($0(0),0)

~wo(0) %% (¢0(0), E0(0),0). (4.4.64)
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and find

Yy 6% aylpudd _
U at+= Yipaga = at+ 614. X -
tt+=go(0),1=0

BYD
+ i (s, (Yo (s, t), o (s 1); t)ds} -
1+ =dy(0),0=0

-Therefore, {4.4.65) has the explicit form

w1 (0) _)a T e, )P
it = {0 (#1) d

+/ "oy °(s Dh(Yo(s, t), it (s i), D)ds
- () 22 6“"" GQRECOERO] i
-—WQ(E)Q‘] g:.fg (i+,{)l} - (4466)
t+z g (0),1=0

As pointed out in [4.30], this expression simplifies further if we use the
energy equation (4.4.8a). Taking the total derivative of thls expression with
respect to { gives

dYy . 8Yp 8%Y, ov .., .. 0¥y 8V s o
wnwu(at+) D&t"'m —a;(}u,t) a-t- + BE(Y(},t)m-E
{4.4.67)
where / = d/dl. We now use (4.4.7a) to set V, = g = —w?(82Y,/0t+"),

divide out an wy and write the result as

,(g_}j_u_)” g, o Yo [V 8, | 8Ye BYo
B+ YO BT Bt ol ot orvel | o1 ot

1 1 av
El
Wy 0 wp Ot

But, this is

& [ (22Y _wi(i&éﬁ)_iy;uz
g |t \at G\t ) T @ 0w B
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1 av
- m 1 (Yo(s, 0}, 0)] ds (4.4.72a)
Co(an, fo) = —~w§(0)~2§§(¢n(0),0) (4.4.72b)
Cs(ae, fo) = wu([))g{-f- ($0(0), 0). (4.4.72¢)

As pointed out earlier, and indicated by the arguments of C;, C» and
Cs, these constants involve functions that are completely defined once agp
and fo are specified. Therefore, if @ and A, are also prescribed arbitrarily,
(4.4.71) shows that w;(0) does not vanish in general; it only vanishes for
the one parameter family of values of o, fy, for which

C1 + Caay + C36 = 0. (44?3)

With w1 (0) # 0, (4.4.59) gives wy(i) #°0, i.e., the phase-shift of the O(1)
oscillations is not constant. A special case for which wy = 0 corresponds {o
h=0,Vi=0anda; = = 0.

In [4.31}, initial conditions for which (4.4.73) holds, and hencew; = 0, are
denoted as ‘synchronized’ initial conditions as the solution is significantly
simplified. It is also pointed out there that for any numerically prescribed
set of values for €, y{0;¢) and Y(0:¢), it is always possible to choose ayg,
Bo, ay and B consistent with the initial data and such that {4.4.73) is
satisfied. Thus, any pair of initial values y(0; ¢) and !}(0; ¢) can be regarded
as synchronized, and we need henceforth not dwell on the variation of the
phase-shift.

4.4.2 An Ezample

We consider the problem discussed in [4.6] and generalize this to include a
small damping term that is linear in ¥ and slowly varying

¥+ )y +alf)y + Dy =0 {4.4.74)

where h, a and b are given functions.
The energy integral (4.4.8a) is

2 )7 2 . .
‘—39 (%ﬁ) + V(Ye,) = Eold) (4.4.75)
where
V(Y1) = ﬂéﬂ}'f + b—flyg‘. (4.4.76)

Examining V for the different possible combinations of the signs of a and
b will determine the cases for which (4.4.75) admits periodic solutions.
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It is convenient to introduce the notation _ _
v = —b)Ys  [4Eq (4.4.80a)
which implies (using the expression given by (4.4.77) for g )

- b 4Eﬁ a 2
Itv=1= [T 23 0,,..,] = 2E — Y& . (4.4.800)
Thus, (4.4.79) takes the form
_ i) Yo! Yomax d¢
= woll) y / : 4.4.81
Viks = ), VI =€ — vE?) ( )

Let us first apply the condition (4.4.11) that ensures the period is
independent of #; here it is convenient to choose Py = 4. We find

dYao

4= % 4.4 82
° / Ao \/Q[Eo — a@)Y2/2 - BYE/4] (8452

where we have set Yy_,, = Ao. Notice that (4.4.78) gives a relation linking
Ap to Ep and the two known functions a(t), b(1). Introducing the change
of variable £ = Yp/Ap as in (4.4.79) we find

2wode [! de
V2E, Jo1 T -850 - &)

The integral in (4.4.83) is just 2K(v), where K is the complete elliptic
integral of the first kind (cf. (4.19))

1
- &
K(v) = fu i (4.4.84)
Therefore, (4.4.83) reduces to

4=

(4.4.83)

VZEq
K(¥)Ao

It follows from the definition of » and Ag that the right-hand side of (4.4.85)
is a known function of Ey and the given functions a(f) and b(1). Thus,
(4.4.85) defines (Ey, 1) of (4.4.15). Henceforth, we will use Ao instead of
Ey in our calculations.

In preparation for inverting (4.4.81) we isolate the integral over (—1,0)
and use (4.4.84)-(4.4.85) to obtain

(4.4.85)

W —

Yo/ Ao d€
+ 2 | .
K(v) Jo V(- E)(1 - vg?)
The inverse is then expressed in terms of the elliptic sine function in the
form:

= (4.4.86)

Yo = Ao(@)sn (Kt - 1),v]. (4.4.87)



