1. Let P be a probability function and A, B and C be any 3 sets. Prove the following.

(a) If $A \subset B$ then $P(A) \leq P(B)$. (5 points)

(b) Suppose that events A, B, and C are independent. Show that A and $(B \cup C)$ are independent events. (5 points)

2. An urn contains two balls numbered 1 and 3. First a ball is drawn randomly from the urn, and then a fair coin is tossed the number of times as the number indicated on the drawn ball. Let X equal the number of heads.

(a) Find the probability density function for X (10pts).

(b) Find the mean and variance of X (5 pts).

3. Let X_1, X_2, \cdots, X_n be a sequence of independent and identically distributed $\text{Expon}(\beta)$ random variables.

(a) Show that $Z = X_1 + X_2 + \cdots + X_n$ has a $\text{Gam}(n, \beta)$ distribution. (5 points)

Now let $Z = X_1 + X_2 + \cdots + X_N$ with $N \sim \text{Geom}(p)$, i.e. Z is a random sum of random variables. We have a hierarchical model with $Z|N \sim \text{Gam}(N, \beta)$ and $N \sim \text{Geom}(p)$.

(b) Find $E(Z)$. (5 points)

(c) Find $\text{Var}(Z)$. (5 points)

(d) Find the joint probability distribution of (Z, N). (5 points)

(e) Find the marginal distribution of Z. (10 points)

4. Suppose a continuous random variable X has a monotone increasing cumulative distribution function $F_X(x)$. Assume that the density function f_X exists. Verify that the random variable $Y = F_X(X)$ has a uniform distribution over the interval $[0, 1]$. (5 points)

5. Let X be a Poisson random variable with mean λ and let $Y = e^X$. Find the probability distribution of Y. (10 points)

6. Let X and Y have joint density

$$f(x, y) = \begin{cases} \lambda^2 e^{-\lambda(x+y)} & \text{if } 0 < x < \infty, 0 < y < \infty \\ 0 & \text{elsewhere} \end{cases}$$

(a) Find the joint density of $U = X/Y$ and $V = X + Y$. (10 points)

(b) Are U and V independent? Justify your answer. (5 points)

(c) Find the marginal distributions of U and V. (5 points)
7. The discrete random variable X has 4 possible values: 0, 1, 2, and 3. Consider the 3 models given in the accompanying table of probabilities.

<table>
<thead>
<tr>
<th>θ_1</th>
<th>θ_2</th>
<th>θ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.2</td>
<td>.2</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>.6</td>
</tr>
<tr>
<td>2</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>3</td>
<td>.2</td>
<td>.1</td>
</tr>
</tbody>
</table>

A Bayesian statistician places the following prior on $\Theta = (\theta_1, \theta_2, \theta_3)^T$: $\pi(\theta_1) = 0.3$, $\pi(\theta_2) = 0.4$, and $\pi(\theta_3) = 0.3$.

(a) Find the unconditional probability that $X = 1$. (5 pts)

(b) Find the posterior probability $\pi(\theta_3|X = 1)$. (5 pts)

8. Let X_i be a random variable distributed as $N(i, i^2), i = 1, 2, 3$. Let X_1, X_2, X_3 be mutually independent.

(a) Find a random variable $U = U(X_1, X_2, X_3)$ such that U has a chi-squared distribution with 3 degrees of freedom. (5 points)

(b) Find a random variable $V = V(X_1, X_2, X_3)$ such that V has an F distribution with 1 numerator and 2 denominator degrees of freedom. (5 points)

9. Suppose X_1, \ldots, X_n represent a random sample from a population with pdf

$$f_X(x|\theta) = \frac{2x}{\theta} \exp\left\{-\frac{x^2}{\theta}\right\} I_{(0,\infty)}(x), \quad \theta > 0.$$

Given: $E(X) = (1/2)\sqrt{\pi\theta}$ and $\text{Var}(X) = \theta \left(1 - \frac{\pi}{4}\right)$. The maximum likelihood estimator for θ is

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$

(a) Find the maximum likelihood estimator for $E(X)$ and $\text{Var}(X)$. Justify your answer. (6 points)

(b) Is the MLE for θ a Uniform Minimum Variance Unbiased Estimator? Justify your answer. (8 pts)

(c) Find an exact $(1 - \alpha)100\%$ confidence interval for θ. (Hint: $2X^2/\theta \sim \chi^2_2$.) (10 pts)

10. State whether the statement is ALWAYS, SOMETIMES, or NEVER true. In each case justify your answer.

(a) An unbiased estimator is consistent. (5 points)

(b) A consistent estimator is unbiased. (5 points)

11. Let X_1, X_2, \ldots, X_n be a random sample from $\text{N}(\mu, \theta)$.

(a) Find the Cramer-Rao Lower Bound (CRLB) for all unbiased estimators of θ. (10 points)
(b) We know that the sample variance S^2 is unbiased for θ.
 i. Find its variance. (Hint: Remember the distribution of $(n - 1)S^2/\theta$.) (5 points)
 ii. Compare the variance to the CRLB. (3 points)
 iii. Discuss, paying particular attention to what happens with large samples. (5 points)

12. Let X_1, \cdots, X_n be iid Poisson(λ).
 (a) Using the Central Limit Theorem find a large sample level α test of $H_0 : \lambda = \lambda_0$ versus $H_1 : \lambda \neq \lambda_0$. Be sure to identify the test statistic. (10 points)
 (b) Find a large sample level α LRT of $H_0 : \lambda = \lambda_0$ versus $H_1 : \lambda \neq \lambda_0$. Be sure to identify the test statistic. (10 points)

13. Let X_1, \cdots, X_n be a random sample from a Uniform $(\theta, 2\theta)$ with $\theta > 0$.
 (a) Show that the smallest order statistic $X_{(1)}$ and the largest order statistic $X_{(n)}$ are a pair of joint minimal sufficient statistics for θ. (10 points)
 (b) Find the MLE of θ. Is it a function of a sufficient statistic? (10 points)