Key Practice Exam 1 

 

> with(linalg):
 

> with(LinearAlgebra):
 

Problem 1 

a.  

> b:=<-2,1,2>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (1)
 

> a:=(-6/Norm(b,2))*b;
 

Typesetting:-mrow(Typesetting:-mverbatim( (2)
 

>
 

b.  

> A:=<<1,1>|<-1,1>|<-1,1>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (3)
 

> B:=<<1,0,1>|<0,-1,1>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (4)
 

> AB:=<<Row(A,1).Column(B,1),Row(A,2).Column(B,1)>|<Row(A,1).Column(B,2),Row(A,2).Column(B,2)>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (5)
 

>
 

c.   

> c:=<b1,1/sqrt(3),1/sqrt(3)>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (6)
 

> solve(Norm(c,2)-1=0);
 

`+`(`*`(`/`(1, 3), `*`(`^`(3, `/`(1, 2))))), `+`(`-`(`*`(`/`(1, 3), `*`(`^`(3, `/`(1, 2)))))) (7)
 

2. 

> C:=<<1,2,2>|<2,5,4>|<3,7,6>|<1,3,a1>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (8)
 

> C1:=addrow(addrow(C,1,2,-2),1,3,-2);
 

Typesetting:-mrow(Typesetting:-mverbatim( (9)
 

a1=2 makes both matrices have rank 2. 

3. 

a   

 

> F:=<<1,2,3>|<-1,-2,-5>|<3,7,5>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (10)
 

> F1:=addrow(addrow(F,1,2,-2),1,3,-3);
 

Typesetting:-mrow(Typesetting:-mverbatim( (11)
 

> F2:=swaprow(F1,2,3);
 

Typesetting:-mrow(Typesetting:-mverbatim( (12)
 

b.  

> Df:=2;
 

2 (13)
 

4.  

> A:=<<1,2,1>|<1,3,3>|<1,2,4>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (14)
 

> b:=<1,3,4>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (15)
 

> Ab:=<A|b>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (16)
 

> Ab1:=addrow(addrow(Ab,1,2,-2),1,3,-1);
 

Typesetting:-mrow(Typesetting:-mverbatim( (17)
 

> Ab2:=addrow(Ab1,2,3,-2);
 

Typesetting:-mrow(Typesetting:-mverbatim( (18)
 

> x3:=1/3;
 

`/`(1, 3) (19)
 

> x2:=1;
 

1 (20)
 

> x1:=1-1-1/3;
 

-`/`(1, 3) (21)
 

> X:=<-1/3,1,1/3>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (22)
 

> A.X;
 

Vector[column](%id = 1381288) (23)
 

>
 

5. 

> B:=<<1,2,-1>|<1,2,0>|<1,3,-1>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (24)
 

> I3:=IdentityMatrix(3);
 

Typesetting:-mrow(Typesetting:-mverbatim( (25)
 

> BI3:=<B|I3>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (26)
 

> BI31:=addrow(addrow(BI3,1,2,-2),1,3,1);
 

Typesetting:-mrow(Typesetting:-mverbatim( (27)
 

> BI32:=swaprow(BI31,2,3);
 

Typesetting:-mrow(Typesetting:-mverbatim( (28)
 

> BI33:=addrow(addrow(BI32,3,1,-1),2,1,-1);
 

Typesetting:-mrow(Typesetting:-mverbatim( (29)
 

> InvB:=delcols(BI33,1..3);
 

Typesetting:-mrow(Typesetting:-mverbatim( (30)
 

>
 

6. 

> A:=<<-4,-2>|<2,2>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (31)
 

> B:=<<1,2>|<0,1>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (32)
 

>
 

a. 

 

> AI:=1/(-4)*<<2,2>|<-2,-4>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (33)
 

> A.AI;
 

Matrix(%id = 1414476) (34)
 

>
 

b.  B is an elementary matrix so the inverse is found by changing the sign of 2. i.e 

 

> BI:=<<1,-2>|<0,1>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (35)
 

> B.BI;
 

Matrix(%id = 1419720) (36)
 

>
 

 

c. 

> ABI:=BI.AI;
 

Typesetting:-mrow(Typesetting:-mverbatim( (37)
 

> A.B.ABI;
 

Matrix(%id = 1425468) (38)
 

>
 

7. 

> AA:=<<1,2,5>|<1,3,7>|<-1,-1,-3>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (39)
 

> bb:=<2,4,10>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (40)
 

> AAbb:=<AA|bb>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (41)
 

> AAbb1:=addrow(addrow(AAbb,1,2,-2),1,3,-5);
 

Typesetting:-mrow(Typesetting:-mverbatim( (42)
 

> AAbb2:=addrow(AAbb1,2,3,-2);
 

Typesetting:-mrow(Typesetting:-mverbatim( (43)
 

> AAbb3:=addrow(AAbb2,2,1,-1);
 

Typesetting:-mrow(Typesetting:-mverbatim( (44)
 

> x3:=t1;
 

t1 (45)
 

> x2:=-t1;
 

`+`(`-`(t1)) (46)
 

> x1:=2+2*t1;
 

`+`(2, `*`(2, `*`(t1))) (47)
 

> X:=<x1,x2,x3>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (48)
 

> AA.X;
 

Vector[column](%id = 1022924) (49)
 

> xp:=<2,0,0>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (50)
 

> xh:=<2*t1,-t1,t1>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (51)
 

> L:=<<1,0,0,0>|<0,1,0,0>|<0,0,1,0>|<0,0,0,1>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (52)
 

> L[2,1]:=-2;
 

-2 (53)
 

> L[3,1]:=-1;
 

-1 (54)
 

> L[4,1]:=-2;
 

-2 (55)
 

Since the next step is to swap row 2,3 then we will swap the entries in L[2,1] and L[3,1]; 

 

> L[2,1]:=-1;
 

-1 (56)
 

> L[3,1]:=-2;
 

-2 (57)
 

We should now swap L[3,1l and L[4,1] but they are the same so that will not be necessary.  

> L[3,2]:=-1;
 

-1 (58)
 

> U:=<<-1,0,0,0>|<-2,-1,0,0>|<3,2,-2,0>|<0,3,4,5>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (59)
 

> P:=IdentityMatrix(4);
 

Typesetting:-mrow(Typesetting:-mverbatim( (60)
 

> P:=swaprow(swaprow(P,2,3),3,4);
 

Typesetting:-mrow(Typesetting:-mverbatim( (61)
 

> G:=<<-1,2,1,1>|<-2,4,1,5>|<3,-6,-1,-10>|<0,5,3,1>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (62)
 

> P.G;
 

Matrix(%id = 1488620) (63)
 

> L.U;
 

Matrix(%id = 1492260) (64)
 

c. 

 

> b:=<1,0,-1,2>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (65)
 

> ForwardSubstitute(<L|P.b>);
 

Vector[column](%id = 1021652) (66)
 

9.   

 

> H:=<<1,2,-1,0>|<-1,3,1,-2>|<1,1,1,1>|<5,6,-4,3>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (67)
 

>
 

We wand the element in coefactor matrix in the 3,2 position since the adjoint is the transpose of the matrix hence putting it in the 2,3 position.  Must also consider the sign of this subdeterminate.  

 

> C32:=delrows(delcols(H,2..2),3..3);
 

Typesetting:-mrow(Typesetting:-mverbatim( (68)
 

> Adj23:=-det(C32);
 

-1 (69)
 

>
 

10. 

a.  T. 

b.  F  The Zero matrix is upper triangular 

c.  T 

d.  F  To be perpendicular then the inner product should be zero. 

e.  T