Lecture 14b Math 221 

EXAMPLE 1  Water Towers and Orthogonal Columns 

 

We will now consider the Water tower problem.  Our first goal is to model the changes in levels from minute k to k+1 and then to use Gram-Schmidt to redesign the problem so that the columns are linearly independent and orthogonal.  The tower system can be found under the title lecture 18 figure 1 

 

T1    Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi((k+1)=Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi((k) -Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi((k) 

T2    Typesetting:-mrow(Typesetting:-mi( = Typesetting:-mrow(Typesetting:-mi( + Typesetting:-mrow(Typesetting:-mfrac(Typesetting:-mrow(Typesetting:-mn(  +Typesetting:-mrow(Typesetting:-mi( +Typesetting:-mrow(Typesetting:-mi(
T3    Typesetting:-mrow(Typesetting:-mi(
T4    Typesetting:-mrow(Typesetting:-mi(
We are really interested in space the difference between the levels at minute k+1 differs from the levels at minute k.  Let Typesetting:-mrow(Typesetting:-mi( be the difference.
 

 

T1  Typesetting:-mrow(Typesetting:-mi(
T2  Typesetting:-mrow(Typesetting:-mi(
T3  Typesetting:-mrow(Typesetting:-mi(  
T4  Typesetting:-mrow(Typesetting:-mi(
 

We now look at the matrix representation of this system 

Typesetting:-mrow(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi( Typesetting:-mrow(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi( = Typesetting:-mrow(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi(
 

 

> with(LinearAlgebra):
 

 

 

> A:=<<-1,1/3,1/3,1/3>|<0,1,-1,0>|<0,1,0,-1>>;;
 

Typesetting:-mrow(Typesetting:-mverbatim(
 

> v1:=Column(A,1);
 

Typesetting:-mrow(Typesetting:-mverbatim(
 

> v2:=Column(A,2);
 

Typesetting:-mrow(Typesetting:-mverbatim(
 

> v3:=Column(A,3);
 

Typesetting:-mrow(Typesetting:-mverbatim(
 

> AG:=GramSchmidt([v1,v2,v3]);
 

Typesetting:-mrow(Typesetting:-mverbatim(
 

>
 

> v1a:=AG[1];
 

Typesetting:-mrow(Typesetting:-mverbatim(
 

> v2a:=AG[2];
 

Typesetting:-mrow(Typesetting:-mverbatim(
 

> v3a:=AG[3];
 

Typesetting:-mrow(Typesetting:-mverbatim(
 

> AGG:=<v1a|v2a|v3a>;
 

Typesetting:-mrow(Typesetting:-mverbatim(
 

We will look at different orders of the vectors v1,v2,v3 when we use GramSchmidt to see if we get a set of orthogonal vectors that will be easier to work with.  

> AG2:=GramSchmidt([v2,v3,v1]);
 

Typesetting:-mrow(Typesetting:-mverbatim(
 

> AG3:=GramSchmidt([v3,v2,v1]);
 

Typesetting:-mrow(Typesetting:-mverbatim(
 

> AG4:=GramSchmidt([v3,v1,v2]);
 

Typesetting:-mrow(Typesetting:-mverbatim(
 

None of the above appear to improve our lot so we will design our water system using our new system with the coefficient matrix AGG 


  
 

> AGG.<f[1](k),f[2](k),f[3](k)>;
 

Vector[column](%id = 1002336)
 

>
 

The above columns are mutually orthogonal.  Making the coefficient matrix an orthogonal matrix.  i.e. a matrix where the columns are not only orthogonal but also each column of lenght one. (normalized)  Look at Lecture 18 figure 2 for the diagram.