Test 1
Key
| > | with(linalg): |
1.
| > | A:=matrix([[1,-2,1],[2,-4,4],[-2,5,-3]]); |
![]() |
(1) |
| > | b:=matrix([[1],[4],[-1]]); |
![]() |
(2) |
| > | Ab:=augment(A,b); |
![]() |
(3) |
| > | Ab1:=addrow(addrow(Ab,1,2,-2),1,3,2); |
![]() |
(4) |
| > | Ab2:=swaprow(Ab1,2,3); |
![]() |
(5) |
| > | Ab3:=mulrow(Ab2,3,1/2); |
![]() |
(6) |
| > | Ab4:=addrow(addrow(Ab3,3,2,1),3,1,-1); |
![]() |
(7) |
| > | Ab5:=addrow(Ab4,2,1,2); |
![]() |
(8) |
| > | z:=1; y:=1+z;x:=1-z+2*y; |
| (9) |
2.
| > | -(-c)*c =4; |
| (10) |
c ±2
3.
| > | v:=matrix([[1],[1],[-1],[-1]]); |
![]() |
(11) |
| > | B:=matrix([[0,1,0,1],[0,0,1,0],[1,-1,0,-1],[0,-1,-1,0]]); |
![]() |
(12) |
| > | C:=matrix([[-1,0],[0,-1],[0,-1],[-1,0]]); |
![]() |
(13) |
a.
| > | x:=evalm(-3*convert(v,vector)/norm(convert(v,vector),2)); |
| (14) |
b.
| > | I4:=diag(1,1,1,1); |
![]() |
(15) |
| > | vT:=transpose(v); |
| (16) |
| > | vvt:=matrix([[1,1,-1,-1],[1,1,-1,-1],[-1,-1,1,1],[-1,-1,1,1]]); |
![]() |
(17) |
| > | ans:=matrix([[0,-1,1,1],[-1,0,1,1],[1,1,0,-1],[1,1,-1,0]]); |
![]() |
(18) |
| > | check:=evalm(I4-vvt); |
![]() |
(19) |
c.
| > | BT:=transpose(B); |
![]() |
(20) |
| > | evalm(C); |
![]() |
(21) |
| > | E31:=1; E42:=1; |
| (22) |
4.
a
| > | AI:=evalm((-1)*matrix([[3,-4],[-4,5]])); |
| (23) |
b.
| > | BI:=matrix([[1,0],[3,1]]); |
| (24) |
c.
| > | BIAI:=matrix([[-3,4],[-9+4,12-5]]); |
| (25) |
| > | evalm(BI&*AI); |
| (26) |
5.
| > | C:=matrix([[1,0,5,1],[1,0,0,1],[0,1,15,0],[3,0,4,2]]); |
![]() |
(27) |
| > | C23m:=matrix([[1,0,1],[0,1,0],[3,0,2]]); |
| > |
![]() |
(28) |
| > | C23:=-1*(1)*(2-3); |
| (29) |
| > |
6
| > | B:=matrix([[1,0,-2],[1,-1,-2],[-2,0,3]]); |
![]() |
(30) |
| > | I3:=diag(1,1,1); |
![]() |
(31) |
| > | BI:=augment(B,I3); |
![]() |
(32) |
| > | BI1:=addrow(addrow(BI,1,2,-1),1,3,2); |
![]() |
(33) |
| > | BI2:=mulrow(BI1,3,-1); |
![]() |
(34) |
| > | BI3:=addrow(BI2,3,1,2); |
![]() |
(35) |
| > | BI4:=mulrow(BI3,2,-1); |
![]() |
(36) |
| > | BI:=delcols(BI4,1..3,1..4); |
![]() |
(37) |
| > | evalm(B&*BI); |
![]() |
(38) |
7
| > | F:=matrix([[2,0,-1],[2,1,-2],[4,1,-3]]); |
![]() |
(39) |
| > | f:=matrix([[2],[2],[4]]); |
![]() |
(40) |
| > | Ff:=augment(F,f); |
![]() |
(41) |
| > | Ff1:=addrow(addrow(Ff,1,2,-1),1,3,-2); |
![]() |
(42) |
| > | Ff2:=addrow(Ff1,2,3,-1); |
![]() |
(43) |
| > | z:=a;y:=z; x:=eval((2+z))/2; |
| (44) |
| > | Ff3:=backsub(Ff2); |
| (45) |
8.
| > | I4:=diag(1,1,1,1); |
![]() |
(46) |
| > | L:=evalm(I4); |
![]() |
(47) |
| > | L[2,1]:=-1; L[3,1]:=-2; L[4,1]:=-2;L[4,2]:=2;L[4,3]:=-1/4; |
| (48) |
| > | evalm(L); |
![]() |
(49) |
| > | U:=matrix([[-2,3,4,1],[0,1,1,-1],[0,0,4,4],[0,0,0,3]]); |
![]() |
(50) |
| > | G:=matrix([[-2,3,4,1],[4,-6,-4,2],[2,-2,-3,-2],[4,-4,-7,-2]]); |
![]() |
(51) |
| > | P:=swaprow(I4,2,3); |
![]() |
(52) |
| > | evalm(P&*G); |
![]() |
(53) |
| > | evalm(L&*U); |
![]() |
(54) |
b.
| > | Pb:=matrix([[0],[1],[0],[1]]); |
![]() |
(55) |
| > | evalm(L); |
![]() |
(56) |
| > | y1:=0; y2:=1; y3:=0; y4:=(1+2*y1 -2*y2 +(1/4)*y3); |
| (57) |
9.
| > | A:=matrix([[1,-1,3],[1,0,2],[3,-2,8]]); |
![]() |
(58) |
| > | b:=matrix([[1],[-3],[2]]); |
![]() |
(59) |
| > | Ab:=augment(A,b); |
![]() |
(60) |
| > | Ab1:=addrow(addrow(Ab,1,2,-1),1,3,-3); |
![]() |
(61) |
| > | Ab2:=addrow(Ab1,2,3,-1); |
![]() |
(62) |
rank(A)=2, rank(A,b)=3 so no solution.
10.
a. T
b. F
c. T
d. T
e. F