Test 2 Practice Exam Key 

 

> with(LinearAlgebra):
 

1. 

> A:=<<1,-1,2>|<1,0,4>|<1,2,8>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (1)
 

> AT:=A^%T;
 

Typesetting:-mrow(Typesetting:-mverbatim( (2)
 

a. 

> A1:=GaussianElimination(A);
 

Typesetting:-mrow(Typesetting:-mverbatim( (3)
 

> A2:=ReducedRowEchelonForm(A1);
 

Typesetting:-mrow(Typesetting:-mverbatim( (4)
 

> r1:=Row(A1,1);
 

Typesetting:-mrow(Typesetting:-mverbatim( (5)
 

> r2:=Row(A1,2);
 

Typesetting:-mrow(Typesetting:-mverbatim( (6)
 

> r11:=Row(A2,1);
 

Typesetting:-mrow(Typesetting:-mverbatim( (7)
 

> f21:=Row(A2,2);
 

Typesetting:-mrow(Typesetting:-mverbatim( (8)
 

rowspace=span{r1,r2}=span{r11,r21} 

b. 

> AT1:=GaussianElimination(AT);
 

Typesetting:-mrow(Typesetting:-mverbatim( (9)
 

> AT2:=ReducedRowEchelonForm(AT1);
 

Typesetting:-mrow(Typesetting:-mverbatim( (10)
 

> c1:=Row(AT1,1);
 

Typesetting:-mrow(Typesetting:-mverbatim( (11)
 

> c2:=Row(AT1,2);
 

Typesetting:-mrow(Typesetting:-mverbatim( (12)
 

> c11:=Row(AT2,1);
 

Typesetting:-mrow(Typesetting:-mverbatim( (13)
 

> c21:=Row(AT2,2);
 

Typesetting:-mrow(Typesetting:-mverbatim( (14)
 

c. 

> z:=<0,0,0>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (15)
 

> Az:=<A|z>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (16)
 

> NT:=BackwardSubstitute(GaussianElimination(Az));
 

Typesetting:-mrow(Typesetting:-mverbatim( (17)
 

> n1:=<2,-3,1>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (18)
 

d.  

> RN:=<r1^%T|r2^%T|n1>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (19)
 

> GaussianElimination(RN);
 

Typesetting:-maction(Typesetting:-mverbatim( (20)
 

The matrix is if rank 3 so they are linearly independent.   

2. 

a. 

> v1:=<1,0,1>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (21)
 

> v2:=<1,0,0>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (22)
 

> v3:=<0,1,1>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (23)
 

> V:=<v1|v2|v3>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (24)
 

> GaussianElimination(V);
 

Typesetting:-maction(Typesetting:-mverbatim( (25)
 

Three piviots so they are linearly independent. 

b. 

> alpha:=DotProduct(v1,v2)/DotProduct(v1,v1);
 

`/`(1, 2) (26)
 

> p:=alpha*v1;
 

Typesetting:-mrow(Typesetting:-mverbatim( (27)
 

c. 

 

> p1:=v1;
 

Typesetting:-mrow(Typesetting:-mverbatim( (28)
 

> p2:=v2-p;
 

Typesetting:-mrow(Typesetting:-mverbatim( (29)
 

> p3:=v3-DotProduct(v3,p2)/DotProduct(p2,p2)*p2-DotProduct(v3,p1)/DotProduct(p1,p1)*p1;
 

Typesetting:-mrow(Typesetting:-mverbatim( (30)
 

d.   

> q1:=Normalize(p1,Euclidean);
 

Typesetting:-mrow(Typesetting:-mverbatim( (31)
 

> q2:=Normalize(p2,Euclidean);
 

Typesetting:-mrow(Typesetting:-mverbatim( (32)
 

> q3:=p3;
 

Typesetting:-mrow(Typesetting:-mverbatim( (33)
 

> Q:=<q1|q2|q3>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (34)
 

> R:=Q^%T.<v1|v2|v3>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (35)
 

e. 

 

> e:=<0,1,0>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (36)
 

> QTe:=Q^%T.e;
 

Typesetting:-mrow(Typesetting:-mverbatim( (37)
 

> x:=BackwardSubstitute(<R|QTe>);
 

Typesetting:-mrow(Typesetting:-mverbatim( (38)
 

> <v1|v2|v3>.x;
 

Typesetting:-maction(Typesetting:-mverbatim( (39)
 

3. 

 

> E:=<<1,1,1>|<-1,0,1>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (40)
 

> b:=<-1,1,3.1>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (41)
 

> ETE:=E^%T.E;
 

Typesetting:-mrow(Typesetting:-mverbatim( (42)
 

> ETb:=E^%T.b;
 

Typesetting:-mrow(Typesetting:-mverbatim( (43)
 

> s:=BackwardSubstitute(<ETE|ETb>);
 

Typesetting:-mrow(Typesetting:-mverbatim( (44)
 

> a:=s[1];
 

1.03333333333333344 (45)
 

> b:=s[2];
 

2.04999999999999982 (46)
 

y=1.033333333+2.05x.   

4a 

 

> <x+y,x-y,x,y>:=x*<1,1,1,0>+y*<1,-1,0,1>;
 

Typesetting:-mrow(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mverbatim( (47)
 

> a:=<1,1,1,0>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (48)
 

> b:=<1,-1,0,1>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (49)
 

=span(a,b) so a vector space.   

b. 

Y in U then YA=0 and Z in U then ZA=0    Look at (a*Y+b*Z)A=a*YA+b*Za=a*0+b*0 =0 so is closed under linear combinations which tell us we have a subspace. 

 

5.  Notice that the following is true. 

 

> B1:=<<1,0>|<0,-1>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (50)
 

> B2:=<<1,1>|<-1,1>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (51)
 

> B3:=<<0,1>|<-1,0>>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (52)
 

> B2=B1+B3;
 

Typesetting:-mrow(Typesetting:-mverbatim( (53)
 

Also, B1 and B3 are linearly independent so a basis is B1,B3.  The dimension is 2.  You could look at a linear combination and set it equal to zero 

 

> a1*B1+b1*B2+c1*B3;
 

Matrix(%id = 1391700) (54)
 

We then have a1+b1=0 and b1+c1=0 . The other two equations -b1-c1=0 and -a1-b1=0 are the same as the first tow.  This tell us that a1=c1and b1=-1 is a possiblity so they are dependent.  But the first and the last one are definitely independent so the dimension is two.   

6.   

 

> w1:=<1,-1,1>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (55)
 

> w2:=<0,1,-1>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (56)
 

> X:=<x,y,z>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (57)
 

> CE:=<w1|w2|X>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (58)
 

> GaussianElimination(CE);
 

Matrix(%id = 1417568) (59)
 

b. 

We must have z+y=0 or z=-y which tell us the vectors look like <x,y,-y>   Try <0,0,1>; 

 

> w3:=<0,0,1>;
 

Typesetting:-mrow(Typesetting:-mverbatim( (60)
 

> GaussianElimination(<w1|w2|w3>);
 

Matrix(%id = 1427904) (61)
 

They are linearly independent so they form a basis for three space.   

7.   0:=c1*v1+c2*v2+...+ck*vk 

Want to show that ci for any i is zero 

Next multiply both sides by  vi^T 

The gives 

vi^T.0= vi^Tc1v1+.....+vi^Tck*vk but everything is zero since orthogonal except when k=i and we have 

vi^T.civi =0 or civi^T.vi=0  Since viT.vi is the square of the lenght then ci=0 and the vectors are linearly independent.    

 

8.  a. T 

    b.  F  Must be linearly independent. 

    c.  T  your text defines a orthogonal matrix as a square matrix so the answer must be true.   

    d.  T  Theorem in you book 

    e.  T  If not then the dimension would be bigger than n which is impossible.