Test 3 practice exam
1.
 |
(1) |
| > |
A:=matrix([[1,0,1],[0,2,0],[1,0,1]]); |
 |
(2) |
| > |
p:=det(evalm(A-lambda*I3)); |
 |
(3) |
 |
(4) |
| > |
v1:=nullspace(evalm(A)); |
 |
(5) |
| > |
v2:=nullspace(evalm(A-2*I3)); |
 |
(6) |
a. spectrum ={0,2} spectrial radius=2
b.{ λ=0,[-1,0,1]}, {λ=2,[1,0,1],[0,1,0]}
c.
 |
(7) |
 |
(8) |
 |
(9) |
 |
(10) |
| > |
evalm(transpose(Q)&*A&*Q); |
 |
(11) |
2l
| > |
A:=matrix([[2,1],[1,2]]); |
 |
(12) |
 |
(13) |
| > |
simplify(evalm(transpose(X)&*A&*X)); |
 |
(14) |


 |
(15) |
| > |
p:=det(evalm(A-lambda*I2)); |
 |
(16) |
 |
(17) |
b. both eigenvalues are postive.
c. 2>0 and det(A)=4-1=3 so postive definite.
 |
(18) |
Both piviots are postivie.
 |
(19) |
| > |
p1:=nullspace(evalm(A-3*I2))[1]; |
 |
(20) |
| > |
p2:=nullspace(evalm(A-I2))[1]; |
 |
(21) |
3.
| > |
H:=matrix([[1,1],[0,3]]); |
 |
(22) |
| > |
P:=det(evalm(H-lambda*I2)); |
 |
(23) |
| > |
p1a:=nullspace(evalm(H-3*I2))[1]; |
 |
(24) |
| > |
p2a:=nullspace(evalm(H-I2))[1]; |
 |
(25) |
a.
For F. [1,1],[-1,1]; for H [1,2],[1,0]
b.
| > |
Q:=augment(normalize(p1),normalize(p2)); |
 |
(26) |
 |
(27) |
| > |
Lambda:=evalm(transpose(Q)&*F&*Q); |
 |
(28) |
c.
 |
(29) |
| > |
Lambda:=evalm(inverse(P1)&*H&*P1); |
 |
(30) |
d.
| > |
P:=evalm(Q&*inverse(P1)); |
 |
(31) |
| > |
evalm(inverse(P)&*F&*P); |
 |
(32) |
It is always good to check your answers.
4.
a.
| > |
A:=matrix([[2,3,1],[0,-1,1],[0,0,1]]); |
 |
(33) |
Since an upper triangular then eigenvalues are on the diagonal and are 2,-1,1 so there are three linearly independent eigenvectors so it is diagonlizable.
b.
| > |
B:=matrix([[2,1,-1],[1,-4,1],[-1,-1,9]]); |
 |
(34) |
1. circle centered at 2 radius 2, 2. circle centered at -4 radius 2, 3. circle centered at 9 radius 2.
in the interval [0,4],
in the interval [-6,-2] and
in the interval [7,11] . There are three real eigenvalues so three distinct eigenvectors. This means that the matrix can be made similar to a diagonl matrix.
The interval for the largest eigenvlaue is [7,11]
5
a.
| > |
C:=matrix([[7/8,1/8],[1/8,7/8]]); |
 |
(35) |
 |
(36) |
 |
(37) |
Ther other eigenvalue is 3/4.
b. { 1,[1,1]}, {3/4,[-1,1]}
c.
| > |
q1:=normalize([1,1]); q2:=normalize([-1,1]); |
 |
![array( 1 .. 2, [( 1 ) = `+`(`-`(`*`(`/`(1, 2), `*`(`^`(2, `/`(1, 2)))))), ( 2 ) = `+`(`*`(`/`(1, 2), `*`(`^`(2, `/`(1, 2))))) ] )](images/test3p_45.gif) |
(38) |
 |
(39) |
| > |
Lambda:=evalm(transpose(Q)&*C&*Q); |
 |
(40) |
d.
 |
(41) |
| > |
steadystate:=evalm(Q&*steadysc&*transpose(Q)&*x0); |
 |
(42) |
6.
| > |
B:=matrix([[1,3],[3,1]]); |
 |
(43) |
| > |
simplify(evalm(transpose(X)&*B&*X)); |
 |
(44) |
 |
(45) |
b product of eigenvalues is -2*4 =-8 so we have a hyperbola
c.
| > |
q1:=normalize(EB[2][3][1]); |
 |
(46) |
| > |
q2:=normalize(EB[1][3][1]); |
 |
(47) |
 |
(48) |
 |
(49) |
| > |
Y=evalm(transpose(Q)&*X); |
 |
(50) |
| > |
Lambda:=evalm(transpose(Q)&*B&*Q); |
 |
(51) |
So the new equatyion will be
| > |
evalm(transpose(Y)&*Lambda&*Y)[1,1]=1; |
 |
(52) |
Angle of rotation is cos(θ)=
7.
| > |
L:=matrix([[1,1,1],[0,2,0],[1,0,1]]); |
 |
(53) |
 |
(54) |
a λ=2 a.m.=2 g.m.=1, λ=0, a.m =1 and g.m=1.
b.
| > |
q1:=normalize(EL[1][3][1]); |
 |
(55) |
| > |
q2:=normalize(EL[2][3][1]); |
 |
(56) |
 |
(57) |
 |
(58) |
| > |
R:=evalm(transpose(Q)&*L&*Q); |
 |
(59) |
c. 

8.
a. T.
b. F A must be diagonalizable
c. F..
d. F must be greater than zero
e. T.