Test 3 practice exam 

1. 

> with(linalg):
 

> I3:=diag(1,1,1);
 

Typesetting:-mrow(Typesetting:-mverbatim( (1)
 

> A:=matrix([[1,0,1],[0,2,0],[1,0,1]]);
 

Typesetting:-mrow(Typesetting:-mverbatim( (2)
 

> p:=det(evalm(A-lambda*I3));
 

`+`(`-`(`*`(4, `*`(lambda))), `*`(4, `*`(`^`(lambda, 2))), `-`(`*`(`^`(lambda, 3)))) (3)
 

> solve(p=0,lambda);
 

0, 2, 2 (4)
 

> v1:=nullspace(evalm(A));
 

Typesetting:-mrow(Typesetting:-mverbatim( (5)
 

> v2:=nullspace(evalm(A-2*I3));
 

Typesetting:-mrow(Typesetting:-mverbatim( (6)
 

a.  spectrum ={0,2} spectrial radius=2 

 

b.{ λ=0,[-1,0,1]}, {λ=2,[1,0,1],[0,1,0]}  

 

c.  

> q1:=normalize(v1[1]);
 

Typesetting:-mrow(Typesetting:-mverbatim( (7)
 

> q2:=normalize(v2[1]);
 

Typesetting:-mrow(Typesetting:-mverbatim( (8)
 

> q3:=normalize(v2[2]);
 

Typesetting:-mrow(Typesetting:-mverbatim( (9)
 

> Q:=augment(q1,q2,q3);
 

Typesetting:-mrow(Typesetting:-mverbatim( (10)
 

> evalm(transpose(Q)&*A&*Q);
 

Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (11)
 

2l   

 

 

> A:=matrix([[2,1],[1,2]]);
 

Typesetting:-mrow(Typesetting:-mverbatim( (12)
 

> X:=matrix([[x],[y]]);
 

Typesetting:-mrow(Typesetting:-mverbatim( (13)
 

> simplify(evalm(transpose(X)&*A&*X));
 

Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mrow(Typesetting:-mverbatim( (14)
 

Typesetting:-mrow(Typesetting:-mn(
Typesetting:-mrow(Typesetting:-mn(
Typesetting:-mrow(Typesetting:-mn(
 

 

> I2:=diag(1,1);
 

Typesetting:-mrow(Typesetting:-mverbatim( (15)
 

> p:=det(evalm(A-lambda*I2));
 

`+`(3, `-`(`*`(4, `*`(lambda))), `*`(`^`(lambda, 2))) (16)
 

> solve(p=0,lambda);
 

3, 1 (17)
 

b.  both eigenvalues are postive.  

 

 

c.  2>0 and det(A)=4-1=3 so postive definite.  

 

> gausselim(A);
 

Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (18)
 

> det(%);
 

Both piviots are postivie.   

3 (19)
 

> p1:=nullspace(evalm(A-3*I2))[1];
 

`:=`(p1, Typesetting:-mfenced(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (20)
 

>
 

> p2:=nullspace(evalm(A-I2))[1];
 

`:=`(p2, Typesetting:-mfenced(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mrow(Typesetting:-mo( (21)
 

3.   

> H:=matrix([[1,1],[0,3]]);
 

`:=`(H, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (22)
 

> P:=det(evalm(H-lambda*I2));
 

`*`(`+`(1, `-`(lambda)), `*`(`+`(3, `-`(lambda)))) (23)
 

> p1a:=nullspace(evalm(H-3*I2))[1];
 

`:=`(p1a, Typesetting:-mfenced(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (24)
 

> p2a:=nullspace(evalm(H-I2))[1];
 

`:=`(p2a, Typesetting:-mfenced(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (25)
 

a.   

For F.  [1,1],[-1,1]; for H [1,2],[1,0] 

b. 

> Q:=augment(normalize(p1),normalize(p2));
 

`:=`(Q, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mrow(Typesetting:-mfrac(Typesetting:-mn( (26)
 

> F:=evalm(A);
 

`:=`(F, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (27)
 

> Lambda:=evalm(transpose(Q)&*F&*Q);
 

`:=`(›, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (28)
 

c.  

> P1:=augment(p1a,p2a);
 

`:=`(P1, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (29)
 

> Lambda:=evalm(inverse(P1)&*H&*P1);
 

`:=`(›, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (30)
 

d. 

> P:=evalm(Q&*inverse(P1));
 

`:=`(P, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mrow(Typesetting:-mo( (31)
 

> evalm(inverse(P)&*F&*P);
 

Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (32)
 

It is always good to check your answers.   

4.   

a.  

> A:=matrix([[2,3,1],[0,-1,1],[0,0,1]]);
 

 

 

 

`:=`(A, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (33)
 

Since an upper triangular then eigenvalues are on the diagonal and are 2,-1,1 so there are three linearly independent eigenvectors so it is diagonlizable.   

 

b.  

> B:=matrix([[2,1,-1],[1,-4,1],[-1,-1,9]]);
 

`:=`(B, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (34)
 

1. circle centered at 2 radius 2, 2.  circle centered at -4 radius 2, 3.  circle centered at 9 radius 2.   

Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi(in the interval [0,4], Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( in the interval [-6,-2] and Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( in the interval [7,11] .  There are three real eigenvalues so three distinct eigenvectors.  This means that the matrix can be made similar to a diagonl matrix.     

 

The interval for the largest eigenvlaue is [7,11] 

5 

a.  

> C:=matrix([[7/8,1/8],[1/8,7/8]]);
 

`:=`(C, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mfrac(Typesetting:-mn( (35)
 

> x0:=matrix([[2],[1]]);
 

`:=`(x0, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (36)
 

> eigenvects(C);
 

[[Typesetting:-mn( (37)
 

Ther other eigenvalue is 3/4. 

b.  { 1,[1,1]}, {3/4,[-1,1]} 

c.    

> q1:=normalize([1,1]); q2:=normalize([-1,1]);
 

 

`:=`(q1, Typesetting:-mfenced(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mverbatim(
array( 1 .. 2, [( 1 ) = `+`(`-`(`*`(`/`(1, 2), `*`(`^`(2, `/`(1, 2)))))), ( 2 ) = `+`(`*`(`/`(1, 2), `*`(`^`(2, `/`(1, 2))))) ] ) (38)
 

> Q:=augment(q1,q2);
 

`:=`(Q, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mrow(Typesetting:-mfrac(Typesetting:-mn( (39)
 

> Lambda:=evalm(transpose(Q)&*C&*Q);
 

`:=`(›, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (40)
 

d.   

> steadysc:=diag(1,0);
 

`:=`(steadysc, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (41)
 

> steadystate:=evalm(Q&*steadysc&*transpose(Q)&*x0);
 

`:=`(steadystate, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mfrac(Typesetting:-mn( (42)
 

>
 

6. 

> B:=matrix([[1,3],[3,1]]);
 

`:=`(B, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (43)
 

> simplify(evalm(transpose(X)&*B&*X));
 

Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mrow(Typesetting:-mverbatim( (44)
 

> EB:=eigenvects(B);
 

`:=`(EB, [[Typesetting:-mrow(Typesetting:-mo( (45)
 

b product of eigenvalues is -2*4 =-8 so we have a hyperbola 

 

c. 

> q1:=normalize(EB[2][3][1]);
 

`:=`(q1, Typesetting:-mfenced(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mverbatim( (46)
 

> q2:=normalize(EB[1][3][1]);
 

`:=`(q2, Typesetting:-mfenced(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mverbatim( (47)
 

> Q:=augment(q1,q2);
 

`:=`(Q, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mrow(Typesetting:-mfrac(Typesetting:-mn( (48)
 

> Y:=evalm([[u],[v]]);
 

`:=`(Y, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mi( (49)
 

> Y=evalm(transpose(Q)&*X);
 

Y = Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mrow(Typesetting:-mverbatim( (50)
 

> Lambda:=evalm(transpose(Q)&*B&*Q);
 

`:=`(›, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (51)
 

So the new equatyion will be  

> evalm(transpose(Y)&*Lambda&*Y)[1,1]=1;
 

`+`(`*`(4, `*`(`^`(u, 2))), `-`(`*`(2, `*`(`^`(v, 2))))) = 1 (52)
 

>
 

Angle of rotation is cos(θ)=Typesetting:-mrow(Typesetting:-mfrac(Typesetting:-msqrt(Typesetting:-mrow(Typesetting:-mn( 

 

7. 

> L:=matrix([[1,1,1],[0,2,0],[1,0,1]]);
 

`:=`(L, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (53)
 

> EL:=eigenvects(L);
 

`:=`(EL, [[Typesetting:-mn( (54)
 

a  Î»=2 a.m.=2 g.m.=1,  Î»=0, a.m =1 and g.m=1.    

 

b.  

> q1:=normalize(EL[1][3][1]);
 

`:=`(q1, Typesetting:-mfenced(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mverbatim( (55)
 

> q2:=normalize(EL[2][3][1]);
 

`:=`(q2, Typesetting:-mfenced(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mverbatim( (56)
 

> q3:=vector([0,1,0]);
 

`:=`(q3, Typesetting:-mfenced(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (57)
 

> Q:=augment(q1,q2,q3);
 

`:=`(Q, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mrow(Typesetting:-mfrac(Typesetting:-mn( (58)
 

> R:=evalm(transpose(Q)&*L&*Q);
 

`:=`(R, Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-mn( (59)
 

c.  Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi(
 

 

8. 

a.  T. 

b.  F  A must be diagonalizable 

c.  F.. 

d.  F  must be greater than zero 

e.  T.