Matematical structure of Information Distortion methods

Tomáš Gedeon

with

Alex Dimitrov (Neuroscience)
Albert Parker, Collette Campion (Mathematics)
Brendan Mumey (Computer Science)

Montana State University
Problems

I will discuss some common mathematical themes of these problems:
Problems

I will discuss some common mathematical themes of these problems:

Rate distortion theory (Shannon 1948)
Problems

I will discuss some common mathematical themes of these problems:

Rate distortion theory (Shannon 1948)

Deterministic annealing (Rose 1990’s).
I will discuss some common mathematical themes of these problems:

Rate distortion theory (Shannon 1948)

Deterministic annealing (Rose 1990’s).

Information Bottleneck (Tishby et al 1999.)
I will discuss some common mathematical themes of these problems:

Rate distortion theory (Shannon 1948)

Deterministic annealing (Rose 1990’s).

Information Bottleneck (Tishby *et. al* 1999.)

Information Distortion (Dimitrov, Miller 2001).
Rate distortion theory

Given:
- X a discrete random variable (source);
- N the size of reproduction variable \hat{X},
- distortion function $d(\hat{x}, x)$

Goal: Find assignment $q = q(\hat{x} | x)$

$$\min_{q} E_p d(x, \hat{x}) \leq DI(X, \hat{X}).$$
Clustering via Deterministic Annealing

Given:

- X - data set
- N - number of centers of clusters in \hat{X}
- distortion function $d(\hat{x}, x)$, usually Euclidean distance

Goal: Find assignment $q = q(\hat{x}|x)$ and positions of centers of clusters \hat{x} to

$$\max_{q, \hat{x}}: E_p d(x, \hat{x}) < D H(\hat{X}|X).$$

Select $\hat{x} = \sum_x q(\hat{x}, x) x$. Then

$$\max_{q}: E_p d(x, \sum_x q(\hat{x}, x) x) \leq D H(\hat{X}|X).$$
Information Bottleneck

Given:

- a pair of random variables X, Y with $p(x, y)$ known
- N a number of elements of reproduction variable \hat{X}
- distortion function is $-I(\hat{X}, Y)$

Goal: Find assignment $q = q(\hat{x}|x)$

$$
\min_{q: -I(\hat{X}, Y) \leq D} I(X, \hat{X}).
$$

Markov chain:

$$
Y \rightarrow X \rightarrow \hat{X}.
$$
Information Distortion

Given:
- a pair of random variables X, Y with $p(x, y)$ known
- N a number of elements of reproduction variable \hat{X}
- distortion function is $-I(\hat{X}, Y)$

Goal: Find assignment $q = q(\hat{x}|x)$

$$
\min_q: -I(\hat{X}, Y) \leq D - H(\hat{X}|X).
$$

Markov chain:

$$
Y \rightarrow X \rightarrow \hat{X}.
$$
Summary

After Lagrange multipliers:

- Information distortion

\[\max H(\hat{X} | X) + \beta I(Y, \hat{X}) \]

- Information Bottleneck Method

\[\max -I(X, \hat{X}) + \beta I(Y, \hat{X}) \]

- Rate Distortion Theory

\[\max -I(X, \hat{X}) - \beta D(X, \hat{X}) \]

- Deterministic Annealing.

\[\max H(\hat{X} | X) - \beta D(X, \hat{X}) \]
Concentrate on IB and ID: same distortion function $I(\hat{X}, Y)$.

- **Information Bottleneck:**

 $\max_{q \in \Delta(N)} - I(\hat{X}, X) + \beta I(\hat{X}, Y),$

- **Information Distortion:** $\max_{q \in \Delta(N)} H(\hat{X} | X) + \beta I(\hat{X}, Y).$
Optimization space

correspondence between IB and ID:

\[-I(\hat{X}, X) = H(\hat{X}|X) - H(\hat{X})\]

In both cases, maximum over space of conditional probabilities

\[\Delta(N) = \prod_{i=1}^{k} \Delta_{i}^{N} N\]

where \(\Delta_{i}^{N}\) is an \(N\)-simplex,

\[q(1|x_{1}) + q(2|x_{1}) + q(3|x_{1}) = 1\]

\[q(1|x_{2}) + q(2|x_{2}) + q(3|x_{2}) = 1\]

\[q(1|x_{3}) + q(2|x_{3}) + q(3|x_{3}) = 1\]
Constrained optimization.

Goal: find solution q at some value of β

- Information Bottleneck: β is finite, represents tradeoff between sparsity of representation and goodness of reproduction.
- Information Distortion: $\beta = \infty$.

Bad news: $\max_{q \in \Delta^N} I(\hat{X}, Y)$ is NP-complete for all $N \geq 2$ ($\beta = \infty$ problem).

Good news: $\max_{q \in \Delta^N} H(\hat{X} | X)$ has unique solution $q = 1/N$ ($\beta = 0$ problem).

Solution: Annealing (maybe Deterministic Annealing?)!
Annealing

Annealing/homotopy idea:

\[
\begin{align*}
\max & \quad H(\hat{X}|X) + \beta I(X, \hat{X}) \\
\max & \quad -I(\hat{X}, X) + \beta I(X, \hat{X})
\end{align*}
\]

Start at \((q, \beta) = (1/N, 0)\), continue this solution in \(\beta\) until \(\beta = \text{target}\)

Problem: Does this find global maximum at \(\beta = \beta^*\)?
Annealing IB

Degeneracy: Initial problem

$$\max_{q \in \Delta(N)} - I(\hat{X}, X)$$

has $N - 1$ dimensional space of solutions:

$$I(\hat{X}, X) = \sum_{\hat{x}, x} q(\hat{x} | x) p(x) \log \frac{q(\hat{x} | x) p(x)}{p(\hat{x}) p(x)}$$

Take $q(\hat{x} | x) = p(\hat{x}) = a(\hat{x})$ with $\sum_{\hat{x}} a(\hat{x}) = 1$.
Then $I(\hat{X}, X) = 0$.

Solution: Start with $N = 2$ and increase N at phase transitions.
Dealing with annealing

Let

\[G(q, \beta) := H(\hat{X} | X) + \beta I(\hat{X}, Y) \] or \[G(q, \beta) := -I(\hat{X}, X) + \beta I(\hat{X}, Y) \]

Problem:

\[\max_{q \in \Delta(N)} G(q, \beta) \]

- Numerical methods.
- Phase transitions: where and what direction.
- What is being computed at phase transitions?
Numerical methods

Basic method:
- Increase β by $\Delta \beta$
- Perturb q and **find** solution for new β.

Find can use different methods:
- Blahut-Arimoto type iteration (Tishby et al.)
- Fixed point iteration (Dimitrov et al.)
- Both find only local maxima, no saddle points.
Basic method
Agglomerative Bottleneck (Slonim, Tishby 1999):

Start at $\beta = \infty$ and decrease β.
However, problem at $\beta = \infty$ is NP-complete.
Dynamical system problem

Since the problem is constrained, we need to consider Lagrangian

\[L(q, \lambda, \beta) = G(q, \beta) + \lambda_x \left(\sum_{\hat{x}} q(\hat{x}|x) - 1 \right) \]

Local maxima are equilibria of the flow

\[
\begin{pmatrix}
\dot{q} \\
\dot{\lambda}
\end{pmatrix} = \nabla_{q, \lambda} L(q, \lambda, \beta)
\]

Bifurcation happens at \((q^*, \lambda^*, \beta^*)\) if the Hessian \(\Delta L\) is singular.
More sophisticated numerics

Not faster numerics!
Continuation algorithm for $L(q, \lambda, \beta)$ - using Newton iteration
- can find unstable solutions.

\[\text{Diagram showing the relationship between } q, \beta0, \beta1, \text{ and } \beta. \]
Numerics using continuation
Phase transitions

Can we compute them "ahead of time"?

Then we can jump to phase transition directly and resolve phase transition.
Yes, we can, for $q = 1/N$.

This is analogous to Deterministic Annealing for Euclidean distortion (Rose 1998)
Deterministic annealing

Phase transitions - zero eigenvalues of ΔL, eigenvector - direction of the split.

$$\Delta L = \begin{pmatrix} \Delta G & J^T \\ J & 0 \end{pmatrix}$$

where J consists of N identity matrices. At $q = 1/N$:

$$\Delta G = \begin{pmatrix} B & 0 & \ldots & 0 \\ 0 & B & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & B \end{pmatrix}$$

Symmetry: relabeling of the elements \hat{x}.
Deterministic annealing

Phase transition values β at $q = 1/N$ corresponds to existence of a null eigenvector v of block B

$$Bv = (\Delta H + \beta \Delta I)v = 0$$

Rewritten, this is

$$(\Delta H)^{-1} \Delta I v = \frac{1}{\beta} v$$

First phase transition value $\beta \leftrightarrow$ largest positive eigenvalue of $(\Delta H)^{-1} \Delta I$
Computing phase transitions

Matrix

\[M := (\Delta H)^{-1} \Delta I \]

has the form

\[M = Q - A \]

\(Q^T \) is stochastic

M has eigenvalue \(1/\beta = 0 \) with eigenvector \((1, 1, 1, \ldots, 1)\) - not interesting!

All other eigenvalues of \(M \) are eigenvalues of \(Q \)

\(Q^T \) is stochastic implies largest eigenvalue of \(Q \) is \(\leq 1 \)

\(1/N \) looses stability at \(\beta \geq 1 \)
Phase transitions for IB

Degeneracy problem again:

- for IB ΔG has for all β and all q $N - 1$ dimensional null space.
- Phase transition - dimension of null space $\geq N$.
Phase transitions for IB

Instead of

\[(Q - A)v = 1/\beta v\]

we get

\[(Q - A)v = (I - A)1/\beta v\]

Same result:

- has solution $1/\beta = 0$ with eigenvector $(1, 1, 1, \ldots, 1)$ - not interesting!

- All other solutions are eigenvalues of Q

Bottom line: Bifurcations for IB and ID at $q = 1/N$ happen at the same values of β and in the same direction.
Phase transitions

Phase transitions at $q = 1/N \Leftrightarrow$ eigenvalues of stochastic matrix Q^T

The matrix Q^T is a transition matrix for a graph G:

- Vertices are patterns y_i
- edge $y_j \rightarrow y_k$ has weight $\sum_i p(y_k|x_i)p(x_i|y_j)$
Digression-Normal cut

Given a graph G with weights $w(a,b)$ divide into 2 groups A and B so that

$$\frac{\text{cut}(A,B)}{\text{assoc}(A,G)} + \frac{\text{cut}(A,B)}{\text{assoc}(B,G)}$$

is minimized

- $\text{cut}(A,B) = \sum_{a \in A, b \in B} w(a,b)$
- $\text{assoc}(A,G) = \sum_{a \in A, e \in G} w(a,e)$
- Finding N-cut is NP-complete problem.
Approximate Normalized cut (Shi and Malik (2000))
Find second smallest eigenvalue of

$$(D - W)y = \lambda Dy.$$

After y is computed, Approximate Normalized Cut is If $y_i > 0, i \in A$, if $y_i \leq 0$, then $i \in B$
Bifurcation direction v at first bifurcation at $q = 1/2$ computes Approximate Normal cut for the graph G:

- Vertices V correspond to the set of patterns Y;
- Weight $w(y_i, y_j) = \sum_i p(y_i|x_i)p(x_i|y_j)$

\[q \]

\[\beta \]

\[v \]
Take $|\hat{X}| = 2$ (two classes) After bifurcation, the probability of x to belong to

- class A: $1/2 + \epsilon v_i$;
- class B: $1/2 - \epsilon v_i$,

v is bifurcating direction ("soft push")
Take $|\hat{X}| = 2$ (two classes) After bifurcation, the probability of x to belong to

- class A: $1/2 + \epsilon v_i$;
- class B: $1/2 - \epsilon v_i$,

v is bifurcating direction ("soft push")
Correspondence

It would be nice if, as $\beta \rightarrow \infty$ probabilities converge to 0 or 1 ="hard clusters" of the N-cut.
It would be nice if, as $\beta \to \infty$ probabilities converge to 0 or 1 ="hard clusters" of the N-cut.
TRUE, for slightly different cost function: replace $H(q) + \beta I(q)$ by $H(q) + \beta U(q)$

\[I(X, Y_N) = \sum_{x,\mu} p(x, \mu) \log \left(\frac{p(x, \mu)}{p(x)p(\mu)} \right) \]

\[U(X, Y_N) = \sum_{x,\mu} p(x, \mu) \left(\frac{p(x, \mu)}{p(x)p(\mu)} - 1 \right). \]

- Bifurcation direction ν at first bifurcation at $q = 1/2$ computes Approximate Normal cut for the graph G':
- Weight $w(y_i, y_j) = \sum_i p(y_i | x_i)p(x_i, y_j)$
- As $\beta \to \infty$ solution converges to Normal Cut of G'.
Summary

- There are similarities and differences between Information Bottleneck, Information Distortion, Rate distortion theory and Deterministic Annealing.
- We reviewed numerical methods used to solve IF and ID: Basic algorithm, agglomerative bottleneck and continuation.
- \(\max I(\hat{X}, Y) \) is NP-complete
- Phase transitions can be explicitely computed for \(q = 1/N \).
- First phase transition computes an Approximate Normal Cut of a certain graph.
Questions

Mathematics

- Global stability of branches
- Extensions to X, Y continuous random variables, multivariate bottleneck.

Computer Science

- Given a graph $G = (Y, E)$, is there a random variable X and a probability distribution $p(X, Y)$ such that annealing $H + \beta \hat{X}$ will compute both Approximate N-cut and N-cut of G?

Neuroscience:

- Use Information distortion as a tool to compare different models of sensory systems (cricket sensory system).