DATA orders;
INPUT Coffee $ Window $ @@;
datalines;
esp w cap d cap w kon w ice w kon d esp d kon w ice d esp d
cap w esp d cap d Kon d . d kon w esp d cap w ice w kon w
kon w kon w ice d esp d kon w esp d esp w kon w cap w kon w
;
PROC FREQ DATA = orders; * Print tables for Window and Window by Coffee;
TABLES Window;
TABLES Window * Coffee/ CHISQ CELLCHI2;
RUN;
The FREQ Procedure
Table of Window by Coffee
Window Coffee
Frequency |
Cell Chi-Square|
Percent |
Row Pct/Col PCT|Kon |cap |esp |ice |kon | Total
---------------+--------+--------+--------+--------+--------+
d | 1 | 2 | 6 | 2 | 1 | 12
| 0.8305 | 0.0939 | 2.1853 | 0.0718 | 2.3796 |
| 3.45 | 6.90 | 20.69 | 6.90 | 3.45 | 41.38
| 8.33 | 16.67 | 50.00 | 16.67 | 8.33 |
| 100.00 | 33.33 | 75.00 | 50.00 | 10.00 |
---------------+--------+--------+--------+--------+--------+
w | 0 | 4 | 2 | 2 | 9 | 17
| 0.5862 | 0.0663 | 1.5426 | 0.0507 | 1.6797 |
| 0.00 | 13.79 | 6.90 | 6.90 | 31.03 | 58.62
| 0.00 | 23.53 | 11.76 | 11.76 | 52.94 |
| 0.00 | 66.67 | 25.00 | 50.00 | 90.00 |
---------------+--------+--------+--------+--------+--------+
Total 1 6 8 4 10 29
3.45 20.69 27.59 13.79 34.48 100.00
Frequency Missing = 1
Statistics for Table of Window by Coffee
Statistic DF Value Prob
------------------------------------------------------
Chi-Square 4 9.4866 0.0500
Likelihood Ratio Chi-Square 4 10.6538 0.0307
Mantel-Haenszel Chi-Square 1 3.8624 0.0494
Phi Coefficient 0.5719
Contingency Coefficient 0.4965
Cramer's V 0.5719
WARNING: 90% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.
Effective Sample Size = 29
Frequency Missing = 1
*************************************************************************
************ Fix a mistake and ask for the EXACT test ***************;
ods graphics on / IMAGEFMT = png IMAGENAME = "CoffeeOrders" height =4in width=5in;
PROC FREQ data = orders;
tables Window * Coffee/ Fisher plots=freqplot(type=dot scale=percent);
RUN;
ods graphics off;
Window Coffee
Frequency |
Cell Chi-Square|
Percent |
Row Pct |
Col Pct |cap |esp |ice |kon | Total
---------------+--------+--------+--------+--------+
d | 2 | 6 | 2 | 2 | 12
| 0.0939 | 2.1853 | 0.0718 | 1.4305 |
| 6.90 | 20.69 | 6.90 | 6.90 | 41.38
| 16.67 | 50.00 | 16.67 | 16.67 |
| 33.33 | 75.00 | 50.00 | 18.18 |
---------------+--------+--------+--------+--------+
w | 4 | 2 | 2 | 9 | 17
| 0.0663 | 1.5426 | 0.0507 | 1.0098 |
| 13.79 | 6.90 | 6.90 | 31.03 | 58.62
| 23.53 | 11.76 | 11.76 | 52.94 |
| 66.67 | 25.00 | 50.00 | 81.82 |
---------------+--------+--------+--------+--------+
Total 6 8 4 11 29
20.69 27.59 13.79 37.93 100.00
Fisher's Exact Test
----------------------------------
Table Probability (P) 0.0027
Pr <= P 0.0962
Effective Sample Size = 29
Frequency Missing = 1
In R:
temp <- scan(what="A")
esp w cap d cap w kon w ice w kon d esp d kon w ice d esp d
cap w esp d cap d Kon d . d kon w esp d cap w ice w kon w
kon w kon w ice d esp d kon w esp d esp w kon w cap w kon w
nn <- length(temp)
temp[temp=="."] <- NA
temp[temp=="Kon"] <- "kon"
coffee <- data.frame( order = temp[seq(1, nn, 2)],
station = temp[seq(2, nn, 2)])
coffeeTable <- with(coffee, table( station, order))
dimnames(coffeeTable) <- list( c("Driveup","Walkin"),
c("capaccino","expresso","iced","kona"))
plot(coffeeTable)
summary(coffeeTable)
fisher.test(coffeeTable)
DATA uri;
input assess$ treat$ count;
datalines;
mild echin 153
mild placebo 170
moderate echin 128
moderate placebo 157
severe echin 48
severe placebo 40
;
ods graphics on / IMAGEFMT = png IMAGENAME = "echinacea" height =4in width=4in;
PROC freq data = uri;
weight count;
table assess * treat/ cellchi2 expected chisq nopercent
plots=freqplot(type=dot scale=percent);
run;
ods graphics off;
The FREQ Procedure
Table of assess by treat
assess treat
Frequency |
Expected |
Cell Chi-Square|echin |placebo | Total
---------------+--------+--------+
mild | 153 | 170 | 323
| 152.68 | 170.32 |
| 0.0007 | 0.0006 |
---------------+--------+--------+
moderate | 128 | 157 | 285
| 134.72 | 150.28 |
| 0.3352 | 0.3005 |
---------------+--------+--------+
severe | 48 | 40 | 88
| 41.598 | 46.402 |
| 0.9854 | 0.8833 |
---------------+--------+--------+
Total 329 367 696
Statistics for Table of assess by treat
Statistic DF Value Prob
------------------------------------------------------
Chi-Square 2 2.5056 0.2857
echinacea <- as.table(matrix(c(153, 170, 128, 157, 48, 40), 3, 2, byrow=TRUE))
dimnames(echinacea) <- list(c("mild","moderate","severe"),
c("echinacea","placebo"))
summary(echinacea)
plot(t(echinacea))