
4 FACTORIAL DESIGNS

4.1 Two Factor Factorial Designs

• A two-factor factorial design is an experimental design in which data is collected for all possible
combinations of the levels of the two factors of interest.

• If equal sample sizes are taken for each of the possible factor combinations then the design is a
balanced two-factor factorial design.

• A balanced a× b factorial design is a factorial design for which there are a levels of factor A, b levels
of factor B, and n independent replications taken at each of the a× b treatment combinations. The
design size is N = abn.

• The effect of a factor is defined to be the average change in the response associated with a change in
the level of the factor. This is usually called a main effect.

• If the average change in response across the levels of one factor are not the same at all levels of the
other factor, then we say there is an interaction between the factors.

TYPE TOTALS MEANS (if nij = n)
Cell(i, j) yij· =
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where nij is the number of observations in cell (i, j).

EXAMPLE (A 2× 2 balanced design): A virologist is interested in studying the effects of a = 2 different
culture media (M) and b = 2 different times (T ) on the growth of a particular virus. She performs a
balanced design with n = 6 replicates for each of the 4 M ∗ T treatment combinations. The N = 24
measurements were taken in a completely randomized order. The results:

THE DATA
M

Medium 1 Medium 2
12 21 23 20 25 24 29

T hours 22 28 26 26 25 27
18 37 38 35 31 29 30

hours 39 38 36 34 33 35

TOTALS
T = 1 T = 2

T = 12 y11· = 140 y12· = 156 y1·· = 296
T = 18 y21· = 223 y22· = 192 y2·· = 415

y·1· = 363 y·2· = 348 y··· = 711

i = Level of T j = Level of M
k = Observation number
yijk = kth observation from the ith

level of T and jth level of M

MEANS
M = 1 M = 2

T = 12 y11· = 23.3 y12· = 26 y1·· = 24.6
T = 18 y21· = 37.16 y22· = 32 y2·· = 34.583

y·1· = 30.25 y·2· = 29.00 y··· = 29.625

• The effect of changing T from 12 to 18 hours on the response depends on the level of M .

– For medium 1, the T effect = 37.16− 23.3 =

– For medium 2, the T effect = 32 − 26 =

• The effect on the response of changing M from medium 1 to 2 depends on the level of T .

– For T = 12 hours, the M effect = 26− 23.3 =

– For T = 18 hours, the M effect = 32− 37.16 =
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• If either of these pairs of estimated effects are significantly different then we say there exists a
significant interaction between factors M and T . For the 2× 2 design example:

– If 13.83 is significantly different than 6 for the M effects, then we have a significant M ∗ T
interaction.

Or,

– If 2.6 is significantly different than −5.16 for the T effects, then we have a significant M ∗ T
interaction.

• There are two ways of defining an interaction between two factors A and B:

– If the average change in response between the levels of factor A is not the same at all levels of
factor B, then an interaction exists between factors A and B.

– The lack of additivity of factors A and B, or the nonparallelism of the mean profiles of A and
B, is called the interaction of A and B.

• When we assume there is no interaction between A and B, we say the effects are additive.

• An interaction plot or treatment means plot is a graphical tool for checking for potential
interactions between two factors. To make an interaction plot,

1. Calculate the cell means for all a · b combinations of the levels of A and B.

2. Plot the cell means against the levels of factor A.

3. Connect and label means the same levels of factor B.

• The roles of A and B can be reversed to make a second interaction plot.

• Interpretation of the interaction plot:

– Parallel lines usually indicate no significant interaction.

– Severe lack of parallelism usually indicates a significant interaction.

– Moderate lack of parallelism suggests a possible significant interaction may exist.

• Statistical significance of an interaction effect depends on the magnitude of the MSE :

For smal values of the MSE , even small interaction effects (less nonparallelism) may be significant.

• When an A ∗B interaction is large, the corresponding main effects A and B may have little practical
meaning. Knowledge of the A ∗B interaction is often more useful than knowledge of the main effect.

• We usually say that a significant interaction can mask the interpretation of significant main effects.
That is, the experimenter must examine the levels of one factor, say A, at fixed levels of the other
factor to draw conclusions about the main effect of A.

• It is possible to have a significant interaction between two factors, while the main effects for both
factors are not significant. This would happen when the interaction plot shows interactions in different
directions that balance out over one or both factors (such as an X pattern). This type of interaction,
however, is uncommon.
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4.2 The Interaction Model

• The interaction model for a two-factor completely randomized design is:

yijk = (22)

where
µ is the baseline mean, αi is the ith factor A effect,
βj is the jth factor B effect, (αβ)ij is the (i, j)th A ∗B interaction effect,
εijk is the random error of the kth observation from the (i, j)th cell.

We assume εijk ∼ IID N(0, σ2). For now, we will also assume all effects are fixed.

• If (αβ)ij is removed from (22), we would have the additive model:

yijk = µ + αi + βj + εijk (23)

• If we impose the constraints

a∑
i=1

αi =

b∑
j=1

βj = 0

a∑
i=1

(αβ)ij = 0 for all j and

b∑
j=1

(αβ)ij = 0 for all i, (24)

then the least squares estimates of the model parameters are

µ̂ = α̂i = β̂j =

α̂βij =

• If we substitute these estimates into (22) we get

yijk = µ̂ + α̂i + β̂j + α̂βij + eijk

= y··· + (yi·· − y···) + (y·j· − y···) + (yij· − yi·· − y·j· + y···) + eijk

where eijk is the kth residual from the treatment (i, j)th cell, and eijk =

• For the 2× 2 design,

y··· = 29.625 y1· = 24.6 y2· = 34.586 y·1 = 30.25 y·2 = 29.00

• Assuming the constraints in (24),

α1 = 24.6− 29.625 =

α2 = 34.583− 29.625 =

β1 = 30.256− 29.625 =

β2 = 29.006− 29.625 =

αβ11 = 23.3− 24.6− 30.25 + 29.625 =

αβ12 = 26− 24.6− 29.00 + 29.625 =

αβ21 = 37.16− 34.583− 30.25 + 29.625 =

αβ22 = 32− 34.583− 29.00 + 29.625 =
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4.3 Matrix Forms for the Twoway ANOVA

Example: Consider a completely randomized 2× 3 factorial design with n = 2 replications for each of the
six combinations of the two factors (A and B). The following table summarizes the results:

Factor A Factor B Levels
Levels 1 2 3

1 1 , 2 4 , 6 5 , 6
2 3 , 5 5 , 7 4 , 6

• Model: yijk = µ+ αi + βj + (αβ)ij + εijk for i = 1, 2 j = 1, 2, 3 k = 1, 2 and εijk ∼ N(0, σ2)

• Assume (i)
∑2

i=1 αi = 0 (ii)
∑3

j=1 βj = 0

(iii)
∑3

j=1(αβ)ij = 0 for i = 1, 2 (iv)
∑2

i=1(αβ)ij = 0 for j = 1, 2, 3

• Thus, for the main effect constraints, we have α2 = −α1 and β3 = −β1 − β2.

• The interaction effect constraints can be written in terms of just αβ11 and αβ12:

αβ12 = αβ22 = αβ13 = αβ23 =

• Thus, the reduced form of model matrix X requires only 6 columns: µ, α1, β1, β2, αβ11 and αβ12.

µ α1 β1 β2 αβ11 αβ12

X =



1 1 1 0 1 0
1 1 1 0 1 0
1 1 0 1 0 1
1 1 0 1 0 1
1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1
1 −1 1 0 −1 0
1 −1 1 0 −1 0
1 −1 0 1 0 −1
1 −1 0 1 0 −1
1 −1 −1 −1 1 1
1 −1 −1 −1 1 1


y =



1
2
4
6
5
6
3
5
5
7
4
6



X ′X =


12 0 0 0 0 0
0 12 0 0 0 0
0 0 8 4 0 0
0 0 4 8 0 0
0 0 0 0 8 4
0 0 0 0 4 8

 X ′y =


54
-6

-10
1

-6
-3



(X ′X)−1 =
1

12


1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 −1 0 0
0 0 −1 2 0 0
0 0 0 0 2 −1
0 0 0 0 −1 2

 (X ′X)−1X ′y =


4.5

-0.5
-1.75

1
-0.75

0





µ̂
α̂1

β̂1
β̂2
α̂β11
α̂β12


Thus, α̂2 = −α̂1 = 0.5 β̂3 = −β̂1 − β̂2 = 0.75 α̂β21 = −α̂β11 = 0.75

α̂β22 = −α̂β12 = 0 α̂β13 = −α̂β11 − α̂β12 = 0.75 α̂β23 = α̂β11 + α̂β12 = −0.75
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Alternate Approach: Keeping 1 + a+ b+ (a ∗ b) Columns

µ α1 α2 β1 β2 β3 αβ11 αβ12 αβ13 αβ21 αβ22 αβ23

X =



1 1 0 1 0 0 1 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0 0 0
1 1 0 0 1 0 0 1 0 0 0 0
1 1 0 0 0 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0 1 0 0 0
1 0 1 1 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0 1 0
1 0 1 0 1 0 0 0 0 0 1 0
1 0 1 0 0 1 0 0 0 0 0 1
1 0 1 0 0 1 0 0 0 0 0 1
0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1



y =



1
2
4
6
5
6
3
5
5
7
4
6
0
0
0
0
0
0
0



X ′X =



12 6 6 4 4 4 2 2 2 2 2 2
6 7 1 2 2 2 2 2 2 0 0 0
6 1 7 2 2 2 0 0 0 2 2 2
4 2 2 5 1 1 2 0 0 2 0 0
4 2 2 1 5 1 0 2 0 0 2 0
4 2 2 1 1 5 0 0 2 0 0 2
2 2 0 2 0 0 4 1 1 1 0 0
2 2 0 0 2 0 1 4 1 0 1 0
2 2 0 0 0 2 1 1 4 0 0 1
2 0 2 2 0 0 1 0 0 4 1 1
2 0 2 0 2 0 0 1 0 1 4 1
2 0 2 0 0 2 0 0 1 1 1 4


X ′y =



54
24
30
11
22
21
3

10
11
8

12
10



(X ′X)−1 =
1

180



86 -45 -45 -20 -20 -20 -6 -6 -6 -6 -6 -6
-45 70 20 0 0 -0 -10 -10 -10 10 10 10
-45 20 70 -0 0 0 10 10 10 -10 -10 -10
-20 0 -0 80 -10 -10 -30 15 15 -30 15 15
-20 0 0 -10 80 -10 15 -30 15 15 -30 15
-20 -0 0 -10 -10 80 15 15 -30 15 15 -30
-6 -10 10 -30 15 15 76 -14 -14 -4 -4 -4
-6 -10 10 15 -30 15 -14 76 -14 -4 -4 -4
-6 -10 10 15 15 -30 -14 -14 76 -4 -4 -4
-6 10 -10 -30 15 15 -4 -4 -4 76 -14 -14
-6 10 -10 15 -30 15 -4 -4 -4 -14 76 -14
-6 10 -10 15 15 -30 -4 -4 -4 -14 -14 76


(X ′X)−1X ′y =



4.5

-.5

.5

-1.75

1

.75

-.75

0

.75

.75

0

-.75



=



µ̂
α̂1

α̂2

β̂1
β̂2
β̂3

α̂β11
α̂β12
α̂β13
α̂β21
α̂β22
α̂β23
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4.4 Notation for an ANOVA

• SSA = nb
a∑

i=1

(yi·· − y···)2 = the sum of squares for factor A (df = a− 1)

MSA = SSA/(a− 1) = the mean square for factor A

• SSB = na
b∑

j=1

(y·j· − y···)2 = the sum of squares for factor B (df = b− 1)

MSB = SSB/(b− 1) = the mean square for factor B

• SSAB = n
a∑

i=1

b∑
j=1

[(yij· − y···)− (yi·· − y···)− (y·j· − y···)]2 = n
a∑

i=1

b∑
j=1

(yij· − yi·· − y·j· + y···)
2

= the A ∗B interaction sum of squares (df = (a− 1)(b− 1))

MSAB = SSAB/(a− 1)(b− 1)= the mean square for the A ∗B interaction

• SSE =
∑a

i=1

∑b
j=1

∑n
k=1

(
yijk − yij·

)2
= the error sum of squares (df = ab(n− 1))

MSE = SSE/ab(n− 1)= the mean square error

• SST =
a∑

i=1

b∑
j=1

n∑
k=1

(yijk − y···)2 = the total sum of squares (df = abn− 1)

• the total sum of squares is partitioned into components corresponding to the terms in the model:

a∑
i=1

b∑
j=1

n∑
k=1

(yijk − y···)2 = nb

a∑
i=1

(yi·· − y···)2 + na

b∑
j=1

(y·j· − y···)2

+ n

a∑
i=1

b∑
j=1

(yij· − yi·· − y·j· + y···)
2 +

r∑
i=1

ni∑
j=1

(yij − yi·)2

OR

• The alternate SS formulas for the balanced two factorial design are:

SST =
a∑

i=1

b∑
j=1

n∑
k=1

y2ijk −
y2···
abn

SSA =
a∑

i=1

y2i··
bn
− y2···
abn

SSB =
b∑

j=1

y2·j·
an
− y2···
abn

SSAB =
a∑

i=1

b∑
j=1

y2ij·
n
− SSA − SSB −

y2···
abn

SSE = SST − SSA − SSB − SSAB

• The alternate SS formulas for the unbalanced two factorial design are:

SST =

a∑
i=1

b∑
j=1

nij∑
k=1

y2ijk −
y2···
N

SSA =

a∑
i=1

y2i··
ni·
− y2···
N

SSB =

b∑
j=1

y2·j·
n·j
− y2···
N

SSAB =

a∑
i=1

b∑
j=1

y2ij·
nij
− SSA − SSB −

y2···
N

SSE = SST − SSA − SSB − SSAB

where N =
∑a

i=1

∑b
j=1 nij , ni· =

∑b
j=1 nij , n·j =

∑a
i=1 nij .
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Balanced Two-Factor Factorial ANOVA Table

Source of Sum of Mean F
Variation Squares d.f. Square Ratio

A SSA a− 1 MSA = SSA/(a− 1) FA = MSA/MSE

B SSB b− 1 MSB = SSB/(b− 1) FB = MSB/MSE

A ∗B SSAB (a− 1)(b− 1) MSAB = SSAB/(a− 1)(b− 1) FA∗B = MSAB/MSE

Error SSE ab(n− 1) MSE = SSE/(ab(n− 1)) ——

Total SStotal abn− 1 —— ——

For the unbalanced case, replace ab(n−1) with N −ab for the d.f. for SSE and replace abn−1 with N −1

for the d.f. for SStotal where N =
∑a

i=1

∑b
j=1 nij .

4.5 Comments on Interpreting the ANOVA

• Test H0 : (αβ)11 = (αβ)12 = · · · = (αβ)ab vs. H1 : at least one (αβ)ij 6= (αβ)i′j′ first.

– If this test indicates that there is not a significant interaction, then continue testing the hy-
potheses for the two main effects:

H0 : α1 = α2 = · · · = αa vs. H1 : at least one αi 6= αi′

H0 : β1 = β2 = · · · = βb vs. H1 : at least one βj 6= βj′

– If this test indicates that there is a significant interaction, then the interpretation of significant
main effects hypotheses can be masked. To draw conclusions about a main effect, we will fix
the levels of one factor and vary the levels of the other. Using this approach (combined with
interaction plots) we may be able to provide an interpretation of main effects.

• If we assume the constraints in (24), then the hypotheses can be rewritten as:

H0 : (αβ)11 = (αβ)12 = · · · = (αβ)ab = 0 vs. H1 : at least one (αβ)ij 6= 0

H0 : α1 = α2 = · · · = αa = 0 vs. H1 : at least one αi 6= 0

H0 : β1 = β2 = · · · = βb = 0 vs. H1 : at least one βj 6= 0

4.6 ANOVA for a 2× 2 Factorial Design Example

• We will now use SAS to analyze the 2× 2 factorial design data discussed earlier.

M
Medium 1 Medium 2

12 21 23 20 25 24 29
T hours 22 28 26 26 25 27

18 37 38 35 31 29 30
hours 39 38 36 34 33 35
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ANOVA and Estimation of Effects for a 2x2 Design

The GLM Procedure

Dependent Variable: growth

ANOVA and Estimation of Effects for a 2x2 Design

The GLM Procedure

Dependent Variable: growth

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 3 691.4583333 230.4861111 45.12 <.0001

Error 20 102.1666667 5.1083333

Corrected Total 23 793.6250000

R-Square Coeff Var Root MSE growth Mean

0.871266 7.629240 2.260162 29.62500

Source DF Type III SS Mean Square F Value Pr > F

time 1 590.0416667 590.0416667 115.51 <.0001

medium 1 9.3750000 9.3750000 1.84 0.1906

time*medium 1 92.0416667 92.0416667 18.02 0.0004

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 32.00000000 B 0.92270737 34.68 <.0001

time        12 -6.00000000 B 1.30490528 -4.60 0.0002

time        18 0.00000000 B . . .

medium      1 5.16666667 B 1.30490528 3.96 0.0008

medium      2 0.00000000 B . . .

time*medium 12 1 -7.83333333 B 1.84541474 -4.24 0.0004

time*medium 12 2 0.00000000 B . . .

time*medium 18 1 0.00000000 B . . .

time*medium 18 2 0.00000000 B . . .

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations.  Terms whose estimates
are followed by the letter 'B' are not uniquely estimable.

ANOVA and Estimation of Effects for a 2x2 Design

The GLM Procedure

Dependent Variable: growth

ANOVA and Estimation of Effects for a 2x2 Design

The GLM Procedure

Dependent Variable: growth

Parameter Estimate
Standard

Error t Value Pr > |t|

mu 29.6250000 0.46135368 64.21 <.0001

time=12 -4.9583333 0.46135368 -10.75 <.0001

time=18 4.9583333 0.46135368 10.75 <.0001

medium=1 0.6250000 0.46135368 1.35 0.1906

medium=2 -0.6250000 0.46135368 -1.35 0.1906

time=12 medium=1 -1.9583333 0.46135368 -4.24 0.0004

time=12 medium=2 1.9583333 0.46135368 4.24 0.0004

time=18 medium=1 1.9583333 0.46135368 4.24 0.0004

time=18 medium=2 -1.9583333 0.46135368 -4.24 0.0004
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ANOVA and Estimation of Effects for a 2x2 Design

The GLM Procedure

Dependent Variable: growth

Fit Diagnostics for growth

0.852Adj R-Square
0.8713R-Square
5.1083MSE
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The GLM Procedure

ANOVA and Estimation of Effects for a 2x2 Design

The GLM Procedure
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Distribution of growth
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Level of
time N Mean Std Dev

12 12 24.6666667 2.77434131

18 12 34.5833333 3.28794861
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ANOVA and Estimation of Effects for a 2x2 Design

The GLM Procedure
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ANOVA and Estimation of Effects for a 2x2 Design

The GLM Procedure
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time*medium

Distribution of growth

growth

Level of
time

Level of
medium N Mean Std Dev

12 1 6 23.3333333 3.07679487

12 2 6 26.0000000 1.78885438

18 1 6 37.1666667 1.47196014

18 2 6 32.0000000 2.36643191
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ANOVA and Estimation of Effects for a 2x2 Design

The UNIVARIATE Procedure
Variable:  resid

ANOVA and Estimation of Effects for a 2x2 Design

The UNIVARIATE Procedure
Variable:  resid

Moments

N 24 Sum Weights 24

Mean 0 Sum Observations 0

Std Deviation 2.10761215 Variance 4.44202899

Skewness 0.41543444 Kurtosis -0.535444

Uncorrected SS 102.166667 Corrected SS 102.166667

Coeff Variation . Std Error Mean 0.43021453

Basic Statistical Measures

Location Variability

Mean 0.00000 Std Deviation 2.10761

Median -0.25000 Variance 4.44203

Mode -1.00000 Range 8.00000

Interquartile Range 3.08333

Tests for Location: Mu0=0

Test Statistic p Value

Student's t t 0 Pr > |t| 1.0000

Sign M -1.5 Pr >= |M| 0.6776

Signed Rank S -10 Pr >= |S| 0.7681

Tests for Normality

Test Statistic p Value

Shapiro-Wilk W 0.966156 Pr < W 0.5737

Kolmogorov-Smirnov D 0.140751 Pr > D >0.1500

Cramer-von Mises W-Sq 0.049547 Pr > W-Sq >0.2500

Anderson-Darling A-Sq 0.303234 Pr > A-Sq >0.2500

4.6.1 SAS Code for 2 x 2 Factorial Design

DM ’LOG; CLEAR; OUT; CLEAR;’;

ODS GRAPHICS ON;
ODS PRINTER PDF file=’C:\COURSES\ST541\TWOWAY1.PDF’;
OPTIONS NODATE NONUMBER;

************************************************;
*** EXAMPLE: 2-FACTOR FACTORIAL (2x2) DESIGN ***;
************************************************;
DATA in;

DO time = 12 to 18 by 6;
DO medium = 1 to 2;
DO rep = 1 to 6;

INPUT growth @@; OUTPUT;
END; END; END;

CARDS;
21 23 20 22 28 26 25 24 29 26 25 27
37 38 35 39 38 36 31 29 30 34 33 35
;
PROC GLM DATA=in PLOTS=(ALL);

CLASS time medium;
MODEL growth = time|medium / SS3 SOLUTION;
MEANS time|medium;

*** Estimate mu ***;
ESTIMATE ’mu’ intercept 1;

*** Estimate the main effects for factor time’;
ESTIMATE ’time=12’ time 1 -1 / divisor = 2 ;
ESTIMATE ’time=18’ time -1 1 / divisor = 2 ;

*** Estimate the main effects for factor medium’;
ESTIMATE ’medium=1’ medium 1 -1 / divisor = 2 ;
ESTIMATE ’medium=2’ medium -1 1 / divisor = 2 ;

*** Estimate the interaction effects’;
*** Take the product of the tau_i and beta_j coefficients;
*** from the main effects ESTIMATE statement. Divisor = a*b;

*** To estimate taubeta i,j
*** (1 -1) x (1 -1) = (1 -1 -1 1) for i,j = 12,1;
*** (1 -1) x (-1 1) = (-1 1 1 -1) for i,j = 12,2;
*** (-1 1) x (1 -1) = (-1 1 1 -1) for i,j = 18,1;
*** (-1 1) x (-1 1) = (1 -1 -1 1) for i,j = 18,2;

ESTIMATE ’time=12 medium=1’ time*medium 1 -1 -1 1 / divisor = 4;
ESTIMATE ’time=12 medium=2’ time*medium -1 1 1 -1 / divisor = 4;
ESTIMATE ’time=18 medium=1’ time*medium -1 1 1 -1 / divisor = 4;
ESTIMATE ’time=18 medium=2’ time*medium 1 -1 -1 1 / divisor = 4;

OUTPUT OUT=diag P=pred R=resid;

TITLE ’ANOVA and Estimation of Effects for a 2x2 Design’;

PROC UNIVARIATE DATA=diag NORMAL;
VAR resid;

RUN;
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4.7 Tests of Normality (Supplemental)

• For an ANOVA, we assume the errors are normally distributed with mean 0 and constant variance

σ2. That is, we assume the random error ε ∼ N(0, σ2).

• The Kolmogorov-Smirnov Goodness-of-Fit Test, the Cramer-Von Mises Goodness-of-Fit Test, and

the Anderson-Darling Goodness-of-Fit Test can be applied to any distribution F (x).

• Although the following notes use the general form F (x), we will be assuming F (x) represents a

normal distribution with mean 0 and constant variance.

• We are also assuming that the random sample referred to in each test is the set of residuals from the

ANOVA.

• Thus, in each each test we are checking the normality assumption in the ANOVA. In this case, we

want to see a large p-value because we do not want to reject the null hypothesis that the errors are

normally distributed.

4.7.1 Kolmogorov-Smirnov Goodness-of-Fit Test

Assumptions: Given a random sample of n independent observations

• The measurement scale is at least ordinal.

• The observations are sampled from a continuous distribution F (x).

Hypotheses: For a hypothesized distribution F ∗(x)

(i) Two-sided: H0 : F (x) = F ∗(x) for all x vs. H1 : F (x) 6= F ∗(x) for some x

(ii) One-sided: H0 : F (x) ≥ F ∗(x) for all x vs. H1 : F (x) < F ∗(x) for some x

(iii) One-sided: H0 : F (x) ≤ F ∗(x) for all x vs. H1 : F (x) > F ∗(x) for some x

Method: For a given α

• Define the empirical distribution function Sn(x) =
Number of observations ≤ x

n

(i) Two-sided test statistic: T = sup
x
|F ∗(x)− Sn(x)|

• When plotted, T is the greatest vertical difference between the empirical and the hypothesized dis-

tribution.

(ii) One-sided test statistic: T+ = sup
x

(F ∗(x)− Sn(x))

(iii) One-sided test statistic: T− = sup
x

(Sn(x)− F ∗(x))

Decision Rule

• Critical values for T , T+ and T− are found in nonparametrics textbooks. For larger samples sizes,

an asymptotic critical value can be used.

• We will just rely on p-values to make a decision.
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4.7.2 Cramer-Von Mises Goodness-of-Fit Test

Assumptions: Same as the Kolmogorov-Smirnov test

Hypotheses: For a hypothesized distribution F ∗(x)

H0 : F (x) = F ∗(x) for all x vs. H1 : F (x) 6= F ∗(x) for some x

Method: For a given α

• Define the empirical distribution function Sn(x) =
Number of observations ≤ x

n

• The Cramer-von Mises test statistic W 2 is defined to be

W 2 = n

∫ ∞
−∞

[F ∗(x)− Sn(x)]2dF ∗(x).

• This form can reduces to W 2 =
1

12n
+

n∑
i=1

(
F ∗(x(i))−

2i− 1

2n

)2

where x(1), x(2), . . . , x(n) represents the ordered sample in ascending order.

Decision Rule

• Tables of critical values exist for the exact distribution of W 2 when H0 is true. Computers generate

critical values for the asymptotic (n→∞) distribution of W 2.

• If W 2 becomes too large (or p-value < α), then we will Reject H0.

4.7.3 Anderson-Darling Goodness-of-Fit Test

Assumptions: Same as the Kolmogorov-Smirnov and Cramer-von Mises tests

Hypotheses: Same as the Cramer-von Mises test.

Method: For a given α

• Define the empirical distribution function Sn(x) =
Number of observations ≤ x

n

• The Anderson-Darling test statistic A2 is defined to be

A2 =

∫ ∞
−∞

1

F ∗(x)(1− F ∗(x))
[F ∗(x)− Sn(x)]2dx.

• This form can reduces to A2 = − 1

n

{
(2i− 1)

(
lnF ∗(x(i)) + ln(1− F ∗(x(n+1−i))

)}
− n where

x(1), x(2), . . . , x(n) represents the ordered sample in ascending order.

Decision Rule

• Computers generate critical values for the asymptotic (n→∞) distribution of A2.

• If A2 becomes too large (or p-value < α), then we will Reject H0.
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