Weekly Write-Up on Sections 4.1 and 4.2

Problem 1. From the suggested homework:

[4.1 #42] The dosage D of diphenhydramine for a dog of body mass w kg is $D = 4.7w^{2/3}$ mg. Estimate the maximum allowable error in w for a cocker spaniel of mass $w = 10$ kg if the percentage error in D must be less than 3%.

\[
D = 4.7w^{2/3} \\
\frac{dD}{dw} = 4.7 \left(\frac{2}{3} \right) w^{-1/3} \\
\frac{dD}{D} = \frac{2}{3w} \frac{dw}{dw} \\
\]

\[
.03 = \frac{2}{3(10)} dw \\
.9 = 2dw \\
dw = \left[.45 \right] kg
\]

Problem 2. From an old exam:

Suppose you are driving along a highway in a car with a broken speedometer at a nearly constant speed and you record the number of seconds it takes to travel between two consecutive mile markers. If it takes 60 seconds, then your average speed is 1 mi/60 s or 60 mi/hr. Now suppose that you travel one mile in $60 + x$ seconds; for example if it takes 62 seconds then $x = 2$ and if it takes 57 seconds, then $x = -3$. In this case, your speed over one mile is $1 \text{ mi} / (60 + x)$ seconds or 63.16 mi/hr. Because there are 3600 seconds in 1 hour, the function

\[
s(x) = \frac{3600}{60 + x}
\]

gives your average speed in mi/hr if you travel one mile in x seconds more or less than 60 seconds. For example, if $x = 2$ then your average speed is $s(2) \approx 58.06 \text{ mi/hr}$. If you travel one mile in 57 seconds, then $x = -3$ and your average speed is $s(-3) \approx 63.16 \text{ mi/hr}$. Because you don’t want to use your phone or calculator while driving, you need an easy approximation to this function. Use linear approximation to derive such a formula.

\[
s(x) = 3600(60+x)^{-1} \\
s'(x) = -3600(60+x)^{-2} \\
s(6) = 60 \\
s'(6) = 1
\]

\[
L(x) = 60 + 1(x-6) \\
L(x) = 60 + x \text{ mph}
\]
Problem 3. For in-class discussion:

In 1919, physicist Alfred Betz argued that the maximum efficiency of a wind turbine is about 59%. If wind enters a turbine with speed \(v_1 \) and exits with speed \(v_2 \), then the power extracted is the difference in kinetic energy per unit time:

\[
P = \frac{1}{2} m v_1^2 - \frac{1}{2} m v_2^2
\]

where \(m \) is the mass of wind flowing through the rotor. Betz assumed that \(m = \rho A (v_1 + v_2)/2 \), where \(\rho \) is the density of air and \(A \) is the area swept out by the rotor. Wind flowing undisturbed through the same area \(A \) would have mass per unit time \(\rho A v_1 \) and power \(P_0 = \frac{1}{2} \rho A v_1^3 \). The fraction of power extracted by the turbine is \(F = P/P_0 \).

a. Show that \(F \) depends only on the ratio \(r = v_2/v_1 \) and is equal to

\[
F(r) = \frac{1}{2} (1 - r^2) (1 + r)
\]

where \(0 \leq r \leq 1 \).

\[
F = \frac{P}{P_0} = \frac{\frac{1}{2} m v_1^2 - \frac{1}{2} m v_2^2}{\frac{1}{2} \rho A v_1^3} = \frac{\frac{1}{2} \rho A (v_1 + v_2)}{\frac{1}{2} \rho A v_1^3} \left(\frac{v_1^2 - v_2^2}{v_1^3} \right)
\]

\[
= \frac{1}{2} \left(\frac{v_1 + v_2}{v_1} \right) \left(\frac{v_1^2 - v_2^2}{v_1} \right)
\]

let \(r = v_2/v_1 \)

\[
F(r) = \frac{1}{2} (1+r) (1-r^2) \quad \text{on } [0,1]
\]

b. Show that the maximum value of \(F(r) \), called the Betz Limit, is 16/27.

\[
F'(r) = \frac{1}{2} \left[(1-r^2) + (1+r)(-2r) \right]
\]

\[
= \frac{1}{2} \left[1 - r^2 - 2r - 2r^2 \right]
\]

\[
= \frac{1}{2} \left(1 - 2r - 3r^2 \right)
\]

\[
0 = \frac{1}{2} \left(1 - 3r \right) \left(r + 1 \right)
\]

C.P. \(r = \frac{1}{3} \)

\[
\begin{array}{l}
\text{Max Value } \frac{16}{27} \\
\end{array}
\]