
Analyzing Right - Censored Data with
MLE Techniques

Dustin Dickerson

Department of Mathematical Sciences

Montana State University

May 7, 2010

A writing project submitted in partial fulfillment
of the requirements for the degree

Master of Science in Statistics



APPROVAL

of a writing project submitted by

Dustin Dickerson

This writing project has been read by the writing project advisor and has been
found to be satisfactory regarding content, English usage, format, citations,
bibliographic style, and consistency, and is ready for submission to the Statistics
Faculty.

Date Dr. John Borkowski
Writing Project Advisor

Date Mark C. Greenwood
Writing Project Coordinator



Dickerson 1

Introduction

Almost every major company invests millions of dollars in product reliability each
year. This research is used to evaluate risks and liabilities, establish warranites,
evaluate replacement policies, assess design changes, and compare different vendors,
materials, manufacturing practices, etc. Often, these findings are the result of the
analysis of survival data from a relatively small number of units. In an ideal
situation, the quality engineer would have complete data from each individual unit,
that is each unit would fail in the desired way within the study time. The engineer
would then be able to input the data into a statistical package and have it fit a
variety of possible distributions (Exponential, Weibull, LogNormal, etc.) using
standard maximum liklihood methods. Then he or she could evaluate the output
and determine which distribution offers the best fit. However, the process is rarely
this simple.

Censoring

Censoring occurs when the exact failure time of a certain item is unknown. There
are two main types of censoring:

1. Right Censoring . When a unit’s failure time is only known to exceed some
value, it is said to be right censored. For exampe, reliability experiments only
last for a finite amount of time and if a product has not failed by the end of
the study time, it is right censored since its actual failure time is only known
to be greater than the study time. Right censoring is the most common form
of censoring, and is usually the result of limited resources or competing failure
modes.

2. Left Censoring . In some situations, one knows only whether a unit failed after
it was inspected once, revealing for instance a cracked covering or leaking hose.
The unit may have failed in a engineering sense at one time but may not have
been noticed until further deterioration caused an inspection. In this case, one
only knows that the failure occured sometime prior to the inspection.

There are numerous combinations and special cases of left and right censoring for
different situations. For example, in interval censoring, items are censored from the
left and the right. The exact failure time is still unknown, but the researcher knows
that it is greater than one time and less than another. My report focuses exclusively
on right, singly censored data. The presense of right censored data complicates
survival analysis, but it does not make it impossible.

Maximum Liklihood Estimation with Censored

Data

Traditional MLE procedures estimate parameter values by using calculus to
determine what values make the observed data most probable. This is achieved by
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differentiating the liklihood function (1) and finding the critical values that
correspond to a maximum.

L (θ,X) =
n∏
i=1

f (xi; θ) (1)

Here, f represents the probability density function of a random variable, xi,
representing failure times and θ represents the parameter(s) associated with that
distribution. However, in many reliability experiments, the probability distribution
is unknown and computer software is used to compare the maximum liklihood
estimates of several distributions.

This procedure is further complicated when dealing with right censored data
because not all of the failure times are known. This requires a modification of the
liklihood function taking into account the censoring:

L (θ,X) =
n∏
i=1

f (xi; θ)
δi [1 − F (xi; θ)]

1−δi

δi =

{
1 if xi is censored
0 if xi is not censored

An Example Using Software

Calculating the maximum liklihood estimator is only half the battle; the quality
engineer must still decide which family of distributions produces the best estimate.
This translates into doing multiple MLE calculations and then comparing
goodness-of-fit statistics. Thankfully, statistical software such as SAS, R, and
Minitab can do these calculations in a matter of seconds and the engineer can
concentrate on interpreting the output. Let’s take a look at an example:

Example. Consider the censored data resulting from a reliability experiment
on a small appliance component (Nelson, 1983). What is recorded below is the
number of cycles each unit completed before it failed. Values marked with a + sign
represent censored values.
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Analysis in SAS

When reading the data into SAS, instead of using plus signs, 1’s were used for
censored values and 0’s were used for uncensored values (this is the default). SAS
has two procedures, LIFETEST and RELIABILITY to calculate survival statistics.
PROC LIFETEST is used to construct the empirical survival (i.e. reliability)
function, using the Kaplin-Meyer Method. A plot of the survival function for the
fan data is given below:

Both PROC LIFETEST and PROC RELIABILITY can generate probability plots,
however, the plots from PROC RELIABILITY are easier to read and interpret.
RELIABILITY can also output summary statistics for specific fitted distributions.
For instance, the output below and on the next page shows what SAS would
calculate if the engineer decided to fit an exponential distribution to the appliance
component data.
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Analysis in R

This same data was analyzed in R using the survival package. One key difference at
the very beginning, is that unlike SAS, R defaults to using a 0 for representing
censored values. Using the Surv and survfit functions, the Kaplin-Meyer plot on the
next page can be created. Notice that the default with R is to include 95%
confidence bands (dashed lines) and tabular output can be obtained by doing
summary on the survfit object (one could also include confidence bands in SAS,
though it is not the default).
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Fitting different distributions to the data is a little more complicated in R but not
impossible. Through the use of the survreg function, one can output an exponential
fit nearly identical to SAS. Unfortunately, R does not output the quantile
information automatically. However, these calculations can easily be written into a
function.

Call:

survreg(formula = Surv(fans$time, event = fans$censor) ~ 1, weights = fans$freq,

dist = "exponential")

Value Std. Error z p

(Intercept) 7.68 0.25 30.7 4.18e-207

Scale fixed at 1

Exponential distribution

Loglik(model)= -138.8 Loglik(intercept only)= -138.8

Number of Newton-Raphson Iterations: 5

n= 26

Percent Estimate Lower 95% Upper 95%

0.1 2.160330 1.323475 3.526342

0.2 4.322824 2.648276 7.056216

0.5 10.823331 6.630658 17.667099

1.0 21.701188 13.294720 35.423201

2.0 43.622696 26.724415 71.206034
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5.0 110.755046 67.851464 180.787258

10.0 227.499693 139.372317 371.351440

20.0 481.822713 295.177311 786.487030

30.0 770.150373 471.814446 1257.128945

40.0 1103.000228 675.727053 1800.445163

50.0 1496.678050 916.904477 2443.051856

60.0 1978.500763 1212.081788 3229.538886

70.0 2599.678278 1592.631529 4243.497019

80.0 3475.178812 2128.986265 5672.590743

90.0 4971.856862 3045.890742 8115.642599

95.0 6468.534912 3962.795219 10558.694456

99.0 9943.713724 6091.781484 16231.285198

99.9 14915.570586 9137.672225 24346.927798

Notice that the parameter estimate labeled ”Intercept” is 7.68. By default, R is
fitting an extreme value distribution. Thus, to obtain the exponential parameter
that SAS outputs, the researcher must take 1

e7.68
= 2159.24. This is then the value

that was used to obtain the percentile estimates, not 7.68.

Analysis in Minitab

Unlike SAS and R, Minitab is less of a traditional programming language and more
of a point-and-click spreadsheet interface rougly similar to Microsoft Excel. Once
the data was inserted into Minitab’s spread sheet, analysis was done using the
Reliability/Survival menu under the Stat tab (see below). This menu then provided
the necessary options to perfrom MLE calculations on the censored data.

After specifying which column represented the indicator for censoring (Minitab uses
the same designation as SAS 1 for censored and 0 for uncensored), selecting MLE
methods, and requesting probability plots and distribution estimates for the output,
the following charts and graphs were generated.
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Characteristics of Distribution

Standard 95.0% Normal CI

Estimate Error Lower Upper

Mean(MTTF) 2159.25 539.812 1322.83 3524.55

Standard Deviation 2159.25 539.812 1322.83 3524.55

Table of Percentiles

Standard 95.0% Normal CI

Percent Percentile Error Lower Upper

1 21.7012 5.42530 13.2948 35.4229

2 43.6227 10.9057 26.7247 71.2054

3 65.7690 16.4423 40.2922 107.355

4 88.1449 22.0362 54.0004 143.879

5 110.755 27.6888 67.8521 180.786

6 133.604 33.4011 81.8504 218.083

7 156.698 39.1746 95.9984 255.779

8 180.042 45.0104 110.299 293.882

9 203.640 50.9101 124.757 332.402

10 227.500 56.8749 139.374 371.348

20 481.823 120.456 295.180 786.480

30 770.150 192.538 471.819 1257.12

40 1103.00 275.750 675.733 1800.43

50 1496.68 374.170 916.913 2443.03

60 1978.50 494.625 1212.09 3229.51

70 2599.68 649.920 1592.65 4243.46

80 3475.18 868.795 2129.01 5672.54

90 4971.86 1242.96 3045.92 8115.57



Dickerson 8

91 5199.36 1299.84 3185.29 8486.92

92 5453.68 1363.42 3341.10 8902.05

93 5742.01 1435.50 3517.74 9372.69

94 6074.86 1518.71 3721.65 9916.00

95 6468.53 1617.13 3962.83 10558.6

96 6950.36 1737.59 4258.01 11345.1

97 7571.54 1892.88 4638.56 12359.0

98 8447.04 2111.76 5174.92 13788.1

99 9943.71 2485.93 6091.84 16231.1

Conclusion

SAS, R, and Minitab are all capable of conducting survival analysis with right
censored data. From the user’s point of view, Minitab was the easiest to use simply
because of its point-and-click environment. (I did not experiment with R
commander or other R plug-ins). Whichever package the researcher decides to use,
they must be aware of some of the differences among the packages. Some of the
differences I notices are listed below.

• Each package has a limited number of distributions available to fit to the data.
SAS has the most distributions availabe (9), while R and Minitab have 7 and
6 available, respectively.

• Minitab’s options allow the user to specify the value of the indicator that
represents a censored value. SAS defaults to having a 1 represented censored
value and R defaults to having a 0 represent a censored value.

• At least in the case of the exponential distribution, R fits a form of the
extreme value distribution which requires a transformation of 1

e−θ
in order to

get the results on the same scale as SAS and Minitab.
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Appendix

R code

require(survival) #The survival package has all of the functions I need

fans <- read.csv(file.choose(), head=T) #Reads in the data

fans$censor <- abs(fans$censor.num -1 ) #I think R counts a 0 as a censored value

#and 1 as a regular failure. SAS does the

#opposite

x <- is.Surv(x)

# This is the code to do a Kaplin-Meyer type plot #

fit <- survfit(Surv(fans$time, fans$censor)~1, weights=fans$freq)

plot(fit, xlab="Cycles to Failure", ylab="Survival Probability",

main="Empirical Survival Function")

summary(fit)

# Making probability plots to judge the fit of each distribution to the data #

par(mfrow=c(2,2))

require(qAnalyst) #Need this to make the probability plots

probplot(fans$time, "exponential", confintervals=TRUE, confidence=0.95)

probplot(fans$time, "weibull", confintervals=TRUE, confidence=0.95)

probplot(fans$time, "lognormal", confintervals=TRUE, confidence=0.95)

#It would be nice to make the red points larger and to figure out the

#95% bands because I don’t think they match the SAS output

survreg(Surv(fans$time, event=fans$censor) ~ fans$censor, dis="weibull")

survreg(Surv(fans$time, event=fans$censor) ~ fans$censor, dis="lognormal")

exp.reg <- survreg(Surv(fans$time, event=fans$censor) ~ 1, dis="exponential",

weights=fans$freq)

summary(exp.reg)

exp.reg$coeff

percentile <- c(0.1,0.2,0.5,1,2,5,10,20,30,40,50,60,70,80,90,95,99,99.9)

#Vector of percentiles

## Percentile Estimates Function ##

Estimates <- function(percentiles, theta, sd){

estimates <- matrix(data=NA, nrow=18, ncol=4)

estimates[,1] <- percentiles

estimates[,2] <- qexp(percentile/100, 1/exp(theta))

estimates[,3] <- qexp(percentile/100, 1/exp(theta-1.96*sd))

estimates[,4] <- qexp(percentile/100, 1/exp(theta+1.96*sd))

colnames(estimates) <- c("Percent", "Estimate", "Lower 95%", "Upper 95%")

return(estimates)

}
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SAS Code

*************************************************;

***** Multiply censor data example 1 ************;

***** from Nelson handout (page 13) *************;

*************************************************;

DM’LOG;CLEAR;OUT;CLEAR;’;

OPTIONS LS=74 PS=72 NONUMBER NODATE;

Data ex1;

INPUT cycles censor n @@;

LABEL cycles = ’NUMBER OF CYCLES TO FAILURE’; CARDS;

45 1 1 47 0 1 73 0 1 136 1 5 145 0 1

190 1 2 281 1 1 311 0 1 417 1 1 485 1 2

490 0 1 569 1 1 571 1 1 571 0 1 575 0 1

608 1 12 608 0 2 630 0 1 670 0 2 731 1 1

838 0 1 964 0 2 1164 1 7 1198 1 1 1198 0 1

1300 1 3

;

PROC LIFETEST DATA = ex1 PLOTS=(LS, LLS, S) OUTSURV=survive GRAPHICS;

* These inputs above are in a sense making;

* a normal probability or QQ plot for;

* the exponential and Weibull distns;

TITLE F=SWISSBh=.6 ’RELIABILITY ANALYSIS: Ex 1’;

TIME cycles*censor(1); *value for censored data indicator = 1;

FREQ n;

SYMBOL1 H=1 V=DOT W=2;

NOTE F=SWISSB H=.35 CM MOVE=(18,65)PCT ’LIFETIMES OF’;

NOTE F=SWISSB H=.35 CM MOVE=(18,63)PCT ’APPLIANCE COMPONENTS’;

NOTE F=SWISSB H=.35 CM MOVE=(18,61)PCT ’PRODUCT-MOMENT METHOD’;

PROC PRINT DATA=survive;

RUN;

PROC RELIABILITY DATA=ex1;

DISTRIBUTION EXPONENTIAL;

PROBPLOT cycles*censor(1) / WAXIS=2 WFIT=2 FONT=SWISSB;

FREQ n;

SYMBOL1 H=1.5 V=CIRCLE W=2;

NOTE F=SWISSB H=.43 CM MOVE=(58,24)PCT ’LIFETIMES OF’;

NOTE F=SWISSB H=.43 CM MOVE=(58,22)PCT ’APPLIANCE’;

NOTE F=SWISSB H=.43 CM MOVE=(58,20)PCT ’COMPONENTS’;

TITLE2 F=SWISSB H=0.5 CM ’FITTING AN EXPONENTIAL DISTRIBUTION’;

* Title2 is like a sub-title;

RUN;


