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Abstract

It’s a standard procedure to model statistical data using given variables and check
residuals after fitting a model. However, according to the well established statistical
theory, probability is a valid summary of some random occurrences of a certain
event. In Cox’s theorem, probability is taken as a primitive (that is, not further
analyzed) and the emphasis is on constructing a consistent assignment of
probability values to propositions.[1] In other words, if the assigned probability is
valid, it’s the same probability assigned to the occurrences of the same event, as it’s
defined as a consistent assignment. On the other hand, if the underlining
probability of occurrences of the event changed, to assign a probability becomes
questionable. Instead of trying to model, an alternative is proposed where we try to
determine the additive components of probability based on grouping random
responses and put the components together on a spatial grid to help understand the
relationship between the set of explanatory variables and counts data. In the light o
Cox’s theorem, such a procedure focuses on consistent probabilities assigned first,
based on which we model the data using existing variables to find hidden patterns.



Smallpox 1

1 Introduction

Consider probability theory in the context of flipping a coin which is a simplest case
to demonstrate probability theory. For example, after 20 flips, we have the following
sequence of tails and heads: 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0. Given such a
sequence, we are not confident at all to predict the outcome of a single flip. (In
terms of the resolution later on introduced, the resolution is not high enough to see
a single flip clearly.) To avoid such an embarrassment, we calculate the proportion
of heads or of tails which in fact is a probability summary assigned to flipping such
a coin with the assumption that all flips are . Is a proportion a good enough
summary? How about if I collect all zeros and set them in the first part of the
sequence and leave all the ones in the last half of the sequence? In this case, the
proportion which is no different than it is for the original sequence. As this sequence
may not look like a the outcome of a random process, I don’t think the sample
proportion is a good statistical summary for such a sequence.

However, we may ask another practically useful question like this: is the coin
different after, say, half of the sequence? As we may have enough observations to be
split into two halves, we may calculate the sample proportions of the first half and of
the second half and compare the two sample proportions in the context of statistics.

If the same question is asked over and over again, we’ll finally find that there’s
a lower limit of the number of flips to which we can confidently assign a sample
proportion as the probability of the involved occurrences. Though we can calculate
a sample proportion only if there’s at least one observation, it makes no sense to
assign either 0 or 1 to such a flip.

We may start reflecting on such a process which is fundamental in statistics:
the proportion of the whole sequence is bound to be blessed with a small estimated
random error, but have we lost some information when the whole sequence was seen
as a sequence where the probability of tails or heads occurrence is consistent across
the board. How about if the probability changes systematically over the sequence?
How much maximum information we may have of the sequence? It’s a dilemma: a
smaller standard error with a sample proportion masks more of a systematical
pattern across the sequence, while on the other hand more information given to the
pattern across the sequence leads to more loss in the information of the whole
picture.

Let’ now consider a spatial setting. If we want to model a spatial data set using
a Poisson model, what does it mean for counts to be randomly distributed across an
area? Informally, it’s a distribution across an area without clustering, or other
regular patterns. If we can find some areas with such a nice property, we can
confidently assign a Poisson parameter as a summary statistic to each area. The
areas are then changed to represent probability components on the map. We may
repeat the process to separate all the probability components which can be pieced
together to create the whole picture of the data set.
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1.1 Assumptions

We assume that a Poisson model is sufficient to model a spatial counts data set if
we believe that the counts are produced based on some probability process. This is
plausible, because if the counts are proportional to the area raised to some power we
may see more counts in a smaller area than in a bigger one. If we do see some
patterns contradicting the assumption, therefore, it’s plausible that the patterns are
introduced by some other unknown factors confounding areas.

We also assume that the effects brought about by factors at play are continuous
on the spatial grid. This is reasonable because all effects are continuous on a certain
scale or the effects with a discrete variable are continuous over its range of effect in
a spatial data setting. For example, if we see jumps in the explanatory variable level
it’s because the scale we use to measure the explanatory variable is too big to to
reveal smaller details which are in the middle of the jumps. However, this is not a
problem since there’s always something too small to be detected precisely, we simply
see all the discontinuous patterns as noise that can balanced out by averaging. we
may take am example to illustrate what we can do about the small discontinuous
noise. Imagine that noise is small random dots all over an area with different colors
indicating different levels of some measurement. If the scale is magnitudes coarser
than the size of the dots, we just see a single color nested in the grid instead of so
many dots, as our visual system cannot detect something arbitrarily small. In such
a light, if the number of patterns is big, the averaged noise induced by such patterns
is supposed to be stable and relatively constant across the grid.

1.2 Procedures

• Finding Contours

The first step in the proposed method is to find out the random components
where the data counts are distributed according to a Poisson distribution with
a certain parameter. Given a data set, we don’t have any difficulty figuring
out the total counts on the spatial grid and how much area is involved. Then
a Poisson parameter is estimated for the whole data set. This is the start from
which we try to find the contours on the spatial map to indicate all the
random components. In order to find the probability components, two criteria
are imposed in an algorithm. The contours are moved continuously to give the
areas having best random patterns. And, when the contours are moved the
Poisson parameters of the affected areas are estimated. The parameter
estimates are supposed to be consistent with the summary parameter
estimate: this is the second constraint. In other words, the algorithm tries to
find boundaries of different areas while keeping the estimated Poisson
parameter consistent with the Poisson parameters on a more general level on
the spatial grid.

Next, we put values of the explanatory variables on the spatial grid separately,
and we use their levels as the responses based on which we make new contours
on the grid.
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The following plot is the final contour plot with original counts overlaid on it:
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• Finding a Good Match Between the Counts and the Explanatory
Variables

We proceed to match the counts contour with each explanatory variable
contour to see which of the variables gives the best spatial match. If none of
them can achieve this goal, we may combine the variables to create a single
variable as the response. We may be able to achieve another contour map
which can be used to find a possible spatial match with the counts contour
map.

1.3 Suggested Algorithms

• Finding a Grid Fine Enough to Estimate Possible Contours

Given that determining whether the counts over an area is computationally
intensive, the algorithm for the above purposes can be computationally
expensive, as every step of changing the contour needs to be checked for
randomness. If we have a map which is similar to our final contour map, it
can be superimposed on a grid as the starting point to find the final contours.
Computation involved could be much more effective and less expensive, as the
superimposed map serves as a guide to find the final contours. For instance,
we may define how fine the grid system is regarding the goal, say, some
criterion like one count per block on average could be likely to work. After we
have a grid, we may collect the blocks to achieve the best collection of them in
terms of finding random components. Or, we may use a density contour map
as the start which is much less computationally expensive. The discrete grid
and the density contours superimposed can serve as a guide map.

• Iterative Methods

We may start by finding an approximate inner most or outer most contour
first and calculate the estimated Poisson parameters for the two components
involved. Since there are always some some random errors associated with the
estimated Poisson parameters and the contours, we may calculate possible
confidence intervals for all of them to achieve some bounds within which we
try to find the best match under the two proposed criteria. (To define what is
best is one of the major tasks in of future works.) After the first step is
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achieved, we proceed to find additional contours using the same technique. We
stop the process once the partition indicates a random spatial distribution
across the area.

1.4 Potential Advantages

• Mathematical Consistency

As the proposed algorithm always keeps the parameters affected in a certain
step consistent with the rest by respecting the total counts produced by the
estimated parameters on all levels, each level of Poisson distribution is
consistent with the more general levels of Poisson parameters. In contrast to
the proposed advantage, the traditional way of modeling may not be able to
give us a total count that is always approximately equal to the original total
count, because if we model the data using the variables given, the integral of
the explanatory variables over the domains may give us a sum significantly
different from the ones produced by the most general model.

A Poisson distribution is linear,[2]in the sense that we can add the parameters
to achieve a new Poisson distribution. Therefore it’s mathematically valid to
lay the random components over a more general level. In mathematical
terminology, the idea may be expressed as follows:

If X falls into Poisson(λ1), and Y falls into Poisson(λ2),

then X + Y falls into Poisson(λ1+λ2), where X and Y are random variables
represent random counts in this context, and λ1,2 are the Poisson parameters.

• Causality

Even if there’s no random assignment of the explanatory variables at all, we
are confident to say that there’s a strong association or possible causal
relationship between the counts and some, maybe, combination of variables if
the match is good enough. This also facilitates interpreting the analysis to the
client or an audience, as the whole process is visible.

• Prevention of Statistical Modelling Abuse

Given the contours resulting from applying the algorithm, we may be able to
say that this contour map is telling us how much resolution the data set can
give us, in terms of probability. Because if we try to zoom in further, the new
areas can no longer produce random spatial distributions, and as a
consequence, we are not justified to assign summary parameters to the areas!
As assigning probabilities is not justified, statistical modeling is not justified
hence. This means the limits of a probability model.

In contrast, a traditional model may give us an estimated response even if a
explanatory variable is given a slightly different value in the model. This is
questionable in terms of resolution the data set can give. As a matter of fact,
statisticians know that there’s error with all estimates, but they don’t know
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what’s the maximum amount of information the data set can give, in other
words they don’t know how much detail the data set can give.

In fact, if we are given a data set, we may be able to find out some association
between the response and the explanatory variables in most cases. Because
when we model a data set, we try many ways to find the strongest association
between the response and explanatory variables. If we put such a way of
modeling in the context of multiple comparison, we may immediately notice
that it’s possible to find some relationship anyway, after so many trials. But
the matching of the spatial contours is graphical than numeric, this may
suggest that it’s hard to match up the two contours. However, if we are not
able to find a good match no matter what combinations we tried, it’s fair to
say that the variables are not enough to determine such a pattern. But
whether this suggested method works and how to define a match are
potentially challenging.

• No Worries about Residuals and Whether Including Variables

As the first goal of such a method is grouping homogeneous counts in areas,
residuals are in fact in a good shape not only in modeling but also in
probability theory. Instead of fitting a model by trying different combinations
of variables, we simply match the contour maps to find association between
the response and explanatory variables. We can exclude the variables that
don’t give a good match without considering modeling which is likely to give
us an overfitted modeling by choosing the ”best” model.

• No Worries about Correlation Structures

As we overlay the response area contours, the final contour map which gives
us the highest resolution in the probability framework automatically gives us a
structure which is produced by the variables centering at different locations.
Therefore, the ”correlated observations” can be explained by a commonly
shared factor at play. For example, we reasonably assume that the
observations on the same individual are correlated because of some shared
errors with the individual. However, the shared errors are produced by some
shared factors in the same individual. In fact, by extending the reasoning like
this, we look past the boundaries of some specific object to gain natural
boundaries of factors determining our responses.

1.5 Future Works

• Defining ”a match”

This is a challenging task as this may affect the effectiveness of the suggest
method a lot and a criterion of a match is difficult. Either a graphical criterion
or a numeric one could apply. If a numeric criterion is applied, the suggested
method could end up doing the same thing as the usual modeling methods do.
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• Materializing the Algorithm

Given the amount of computation that could be involved, it could be
impossible to implement the ideas if the program is not optimized in terms of
computation. And there are many different approaches to the implementation
of the ideas in computing. To consider all the possible approaches and to see if
there’s any improvement by combining some of them take lots of time and
effort.
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