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Anderson Clustering NFL Quarterbacks using QBR Distributions

Abstract: Clustering NFL Quarterbacks using

QBR Distributions

Quarterbacks are becoming the face of most NFL teams. QBR, a metric designed by

ESPN, has been used since its creation in 2011 to compare the efficiency (and impact)

a quarterback had for his team in a given game. A method of functional data analysis,

inspired by the work by Noah Davis and Michael Lopez, has been used to cluster quar-

terbacks using the QBR distributions of each quarterback. Methods were first used to

attempt to replicate the work of Davis and Lopez, which involved the k-means clustering

algorithm. Other methods were proposed to better compare the estimated QBR densities

using L2 and Kullback-Leibler distances. The results suggest five clusters of QBR distri-

butions were present that were described as “Elites”, “Second-tiers”, “High Expectations”,

“Some-potential”, and “Still Around”.
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1 Introduction

Jameis Winston and Marcus Mariota, quarterbacks from Florida State University and the

University of Oregon, respectively, were picked first and second overall in the 2015 National

Football League (NFL) draft. Prior to the 2015 draft there have been 85 players taken first

overall since 1936 (see Figure 1). Of the 85 players drafted, 31 have been quarterbacks; the

next most being running-backs, of which there were 12.
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Figure 1: The positions of the first pick taken in the NFL draft from each year, dating back to
1936. Data were obtained from [1]. The positions are center (C), center/linebacker (C/LB),
defensive back (DB), defensive end (DE), defensive tackle (DT), switchable end (E), fullback
(FB), guard (G), halfback (HB), linebacker (LB), offensive tackle (OT), quarterback (QB),
runningback (RB), and wide receiver (WR). Some of the positions have changed over time,
thus the reason there are DEs and Es as well as halfbacks and runningbacks.

The quarterback has become, arguably, the most sought after position by NFL teams.

This is further evidenced by Figure 2, which shows beanplots (Kampstra, 2008) of the top

ten salaries of players at each position from the 2014 season. Notice how much higher, on

average, the top ten quarterbacks were paid in comparison to runningbacks who have been

taken first overall the second most among positions. Although there were a couple of right

tackles that were being paid very lucratively, as well as a well-paid outside linebacker in a 3-4

defensive system, on average, the top ten quarterbacks were being paid close to 10 million
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dollars more per year.
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Figure 2: Beanplots of the top ten salaries of players at each position in 2014. Data were
obtained from [2].

Due to the high value placed upon quarterbacks, a great amount of attention is given

to the position (both for fans and team managers). As a natural outcome of this focus,

methods have been created to assess and compare quarterback performance. In 2011, ESPN

(the Entertainment and Sports Programming Network) designed a new metric called the

Total Quarterback Rating, or QBR for short. ESPN has not released the exact formula for

calculating QBR due to it being proprietary information; however, what has been released

about the formula is that it takes every play of a team’s offense into account when calculating

the QBR for any quarterback. Dean Oliver, at ESPN, wrote a guide to the rating (Oliver,

2011) which illustrates some of the background behind the metric. The reader is encouraged

to read Oliver’s explanation if interested in learning more about the measure, which uses

terms such as “win probability”, “expected points”, “division of credit”, and “clutch index”.

What is important about QBR for understanding this paper is that it is a measure that has

been re-scaled to be between 0 and 100, that a higher rating is better, and that a QBR of

100 is a perfect performance for a quarterback.
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1.1 Validity of QBR?

There are a lot of critics of ESPN’s QBR metric. A great deal of criticism of the metric is

due to the hidden nature of the calculations. Although Oliver does provide an explanation

of the concepts the group at ESPN contemplated for creation of the metric, it does not

provide enough information on how QBR is actually computed. Another criticism is due

to the subjective nature of many of the concepts. How are the weightings for each play

determined? How was a throw good or bad in this situation but in another situation it

was the opposite? For a time, some critics were bewildered that Charlie Batch, the backup

quarterback for Ben Roethlisberger in 2010, had the best QBR game ever with a score of

99.9 (Smith, 2015). The results of which appeared to have vanished or changed from the

ESPN database as it was not found upon searching. Despite the many concerns with regards

to this metric, this report will not explore the validity of this metric.

1.2 Purpose of this Analysis

Davis and Lopez (Davis & Lopez, 2015) wrote an article entitled “The 10 Types Of NFL

Quarterback” for the website FiveThirtyEight in January of 2015 that serves as the inspi-

ration for this analysis. Davis and Lopez took NFL quarterbacks and grouped them into 10

categories based on their respective QBR density curves. We investigate this idea further.

The steps of Davis and Lopez’s analysis are replicated and then the clusters and methods

used to find the clusters are explored further.
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2 Data

2.1 Source

ESPN makes the game-level QBR data available to the public [3]. The QBR of a quarterback

is measured for each game and ESPN stores it by the week (one game per week) of the

season. Only the quarterback and his rating were used for the purpose of this analysis.

In an attempt to be consistent with Davis and Lopez, only results from quarterbacks on

regular season games between 2006 and 2014 were included. It was unclear if postseason

results should be included and thus were left out. The article was written in January 2015

so it is possible that the 2014 season may not have been fully available for Davis and Lopez.

2.2 Scraping

QBR data are available publicly from ESPN. However, it is available from each week in each

season and not separately for each player. For convenience and simplicity, the R package

rvest (Wickham, 2015) was used to scrape the data from their publicly available websites.

For more information on scraping data, see the sample code availaible at R-bloggers (Rudis,

2014).

2.3 Processing

The initial data set contained 5,107 QBR results from 160 quarterbacks. Some of the quar-

terbacks included were backups and only had one or two games played. To be consistent

with Davis and Lopez, the data were further reduced to include only the 46 quarterbacks

they discussed. This, for the most part, meant including only quarterbacks who had at least

10 starts over the previous two years or 50 career starts since 2006. See Davis & Lopez

(2015) for a list of quarterbacks included (it is unclear which D. Carr was included, though
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it was our belief it was David and not Derek). The final dataset, which may or may not be

the same data Davis and Lopez worked with, included 3,202 QBR observations, total, on 46

quarterbacks.

3 Densities

Non-parametric kernel-density estimators are one way to approximate the distribution of a

random variable. It helps to think in terms of histograms to understand them as Härdle

and Simar (2012) write “Histograms are density estimates.” If the variable of interest is

measured in some fashion (quantitative) then it can be appropriate to use a histogram to

display the data. In contrast to a barplot or bargraph (see Figure 1) a histogram is not

naturally grouped by some characteristic. In Figure 1, the bars were given to each position

that was drafted. To make a histogram for a quantitative variable, the data must be binned

in some fashion. For example, the QBRs for Peyton Manning, who recently retired from the

NFL, are displayed in Figure 3 with a density curve that is discussed below.

Histogram of Peyton Mannings QBR 
 (2006−2014)
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Figure 3: Histogram (gray bars) of QBR for Peyton Manning from 2006 to 2014 with a
density curve (dashed line) superimposed.

The function hist(), in base R (R core team, 2016), created 11 break points defining 10
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mutually exclusive and exhaustive bins of QBR values. The observations were then counted

in each bin with the results shown in Table 1. Assuming bars are all of equal width, the

choice of the bandwidth h (or width of bins) acts as a smoothing parameter. If h is too

large, it leads to too few blocks and over-smoothing, while h too small can create false peaks

and little summarization, as evidenced by Figure 4.

Bin Bin Count Density
[10,20] 1 0.01
(20,30] 7 0.06
(30,40] 4 0.03
(40,50] 11 0.09
(50,60] 13 0.10
(60,70] 9 0.07
(70,80] 9 0.07
(80,90] 29 0.23
(90,100] 41 0.33

Table 1: The number of games that P. Manning had a QBR in a bin chosen by the hist()

function and the resulting density of the bin obtained by dividing by the total number of
games recorded for P. Manning between 2006 and 2014. By default the bins are right-closed,
meaning a 30 would put the observation in the 20-30 grouping.

(a) Histogram of Peyton Mannings
 QBR (h=100)
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(b) Histogram of Peyton Mannings
 QBR (h=1)
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Figure 4: Histograms of QBR for Peyton Manning from 2006 to 2014 with density curves
superimposed using a bandwidth of (a) 100 and (b) 1.

Figure 4 (a) with a bandwidth of 100, gives the illusion that P. Manning was equally

likely to have a game that results in a QBR of 30 or lower as a QBR of 70 or higher (which
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is clearly not the case). Figure 4 (b) with a bandwidth of 1, on the other hand, makes it

appear that there is a non-zero probability of P. Manning having a performance that results

in a QBR between 62 and 63 but zero probability of P. Manning having a game with a QBR

between 60 and 61. There is little to indicate that his QBR should act accordingly! In

comparison, Figure 3 shows a histogram with a bandwidth of 10 that appears to be more

reflective of what the distribution of P. Mannings QBR could look like, showing that this

default bandwidth gave a more reasonable choice than either of the choices in Figure 4.

Härdle and Simar (2012) present some difficulties with histogram estimation: (1) the

choice of binwidth, (2) the choice of bin origin, (3) the loss of information from replacing

observations with interval-centered points, and (4) the underlying density is usually assumed

to be smooth yet that is not the case with histograms. The distribution using a histogram

can be computed via

f̂h(x) =
1

nh

n∑
i=1

I

(
|x− xi| ≤

h

2

)
, (1)

The I() in Equation 1 is called an indicator function where it is 1 if the observation is

within half the bandwidth of the center point of the interval and 0 otherwise. Those ones

and zeroes are then summed up for all the bins and then divided by the number of bins

times the binwidth size to determine the density function for any x.

Instead of using boxes (each observation in a range) as a way to build the distribution, a

smooth kernel function can be used. This approach may aid in avoiding one of the difficulties

presented, but is still subject to the choice of bandwidth. We can modify Equation 1 by

defining K(u) = I(|u| ≤ 1
2
) (Härdle & Simar, 2012), which is the general form of a kernel

estimator, and use it to provide a density estimator of

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (2)
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It is important to note that the density function is scaled so that the total area under the

curve is 1. This is consistent with the definition of a probability distribution function. All

of the densities for the QBRs of each quarterback are also defined on the range of 0 to 100.

There are still decisions to be made for the densities as the analysis moves forward: the choice

of kernel, the bandwidth, and the evaluation grid of the density estimate for clustering.

3.1 Choice of Kernel

There are seven choices of kernel available in R’s density function: “gaussian”, “epanech-

nikov”, “rectangular”, “triangular”, “biweight”, “cosine”, and “optcosine”. Figure 5 displays

the estimated density for the 14 QBRs of Blake Bortles from 2006 to 2014 using each of these

kernels with a bandwidth of h = 5. The rectangular kernel is the least smooth of the choices

but all of the kernels appear to find similar estimates of f̂(x). The default choice in R is to

use the Gaussian kernel, due to its smooth behavior and common usage in many fields. The

kernel types are summarized in Table 2. As evidenced by Figure 5, the choice of kernel
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Figure 5: The estimated density of Blake Bortles QBR from 2006-2014 using each kernel. A
rug plot (bottom of plot) was used to show the 14 observed QBRs.
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would not appear to matter as each formed a similar estimate, except for rectangular. Due to

its common usage and by reviewing the provided estimate densities in the article, we assume

that Davis and Lopez used Gaussian kernels. They certainly did not use a rectangular kernel.

K(•) Kernel
K(u) = 1√

2π
exp(−u

2
) Gaussian

K(u) = 3
4
(1− u2)I(|u| ≤ 1) Epanechnikov

K(u) = 1
2
I(|u| ≤ 1) Rectangular (or Uniform)

K(u) = (1− |u|)I(|u| ≤ 1) Triangular
K(u) = 15

16
(1− u2)2I(|u| ≤ 1) Biweight (or Quartic)

Table 2: Formulas for the more common kernels as described by Härdle and Simar.

3.2 Choice of Bandwidth

There are many rules of thumb about the choice of bandwidth. One idea for the Gaussian

kernel is to use hG = 1.06σ̂n−1/5, where σ̂ denotes the sample standard deviation of the

responses and n the number of observations, and to use hQ = 2.62 ·hG for the quartic kernel

(Härdle & Simar, 2012). Venables and Ripley (2002) suggest a slight adjustment to the

bandwidth with h = 1.06 ·min(σ̂, R/1.34) · n−1/5 where R is the range of the sample values,

which they found wasn’t always desirable. Härdle has other suggestions and explanations of

bandwidth choices (Härdle, 1990). Delicado (Delicado, 2007) argues that if the bandwidth

sizes or evaluation points of the density curves differ between the density estimates when

considering multiple estimated densities then the comparison of the estimated probability

distributions would have some sort of dependence on either selection.

The bandwidth plays a large role in the shape of the estimate. Too small a bandwidth

and the estimate is too choppy, but too large and the estimate loses information, such as

modality, as evidenced in Figure 6. Using Bortles’ QBRs, and code similar to Everitt and

Hothorn (2011), a Gaussian kernel was used to estimate the density with bandwidths of

size 1, 10, and 30. Using the bandwidth of 1 (Figure 6 (a)) results in a very separated

overall density estimate (bold line) which would be illogical. The bandwidth choice of 10
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(Figure 6 (b)) seems to find a fairly smooth estimate but the bi-modality is still captured.

In comparison, the bandwidth of 30 (Figure 6 (c)) creates a very smooth estimate and does

not capture the bi-modal feature that the bandwidth of 10 captured.
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(a) Density using Gaussian Kernel 
 (Bandwidth set to 1)
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(b) Density using Gaussian Kernel 
 (Bandwidth set to 10)
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(c) Density using Gaussian Kernel 
 (Bandwidth set to 30)
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Figure 6: Density estimates (bold lines) for Blake Bortles QBR using bandwidths of (a) 1, (b)
10, and (c) 30. Below the overall density estimates are the Gaussian-kernel, building blocks
that are summed to create the overall density estimates. The building blocks are extremely
flat in (c) due to the large bandwidth choice making them difficult to see.

3.3 Choice of Grid Resolution for Density Evaluation

Given a smooth density curve, it is often necessary to evaluate the curve on a discrete grid

of points. The default grid of evaluation points of a density estimate in R is 512 evenly

spaced points from the minimum to maximum values that need to be defined; if these are

not specified, then the smallest value used is the minimum observation minus three times

the bandwidth and and largest value used is the maximum observation plus three times the

bandwidth. The choice of size makes little impact on the shape of the estimate if it is over

20, as evidenced in Figure 7. In Figure 7 (a), density estimates for Blake Bortles QBR

are displayed using a Gaussian kernel and bandwidth of 10 with the number of evaluation

points ranging between 100 and 1000 (by 100). All of the density estimates overlap each

other, thus to see the estimated densities they were shifted down (from the estimate formed

using 1000 evaluation points) proportional to their grid resolution size. In Figure 7 (b), the

estimated densities using grids with 3 to 18 points are displayed along with the result for
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1000 evaluation points. As we get closer to 18 evaluation points the densities are closer to

the estimated density using a size of 1000. The choice of size does not appear as impactful

on the shape but it would be good to reiterate Delicado’s (2007) thoughts on the matter and

choose equal evaluation points for each density estimate if multiple densities are going to be

compared.
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(a) Density Estimates using Various sizes
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Figure 7: The estimated densities of Blake Bortles QBR using a Gaussian kernel and band-
width of 10 with (a) sizes of 100 to 1000 by 100 (shifted down by N/1,000,000 to be visible)
and (b) sizes of 3 to 18 with one of size 1000 (right).

3.4 Choice on whether or not to “lift”

In creating the estimated densities using the density() function in R (R Core Team, 2016)

and then cropping them to be between 0 and 100, all of the estimated QBR densities lose

some information. In other words, the densities created do not integrate to 1 over QBR values

of 0 to 100, and more troublesome is that they do not all integrate to the same constant over

that range. Take, for example, the estimated QBR densities for Blake Bortles and Peyton

Manning using a Gaussian kernel, bandwidth of 10, and 100 evaluation points. Using a left

Riemann sum, the area under Bortles’ QBR density between 0 and 100 is 0.927 while the

area under Manning’s QBR density on that range is 0.879, as illustrated in Figure 8. To

make the comparison more fair between all of the estimated QBR densities, they will be

lifted by their area to ensure all QBR densities will integrate to 1 between QBR’s of 0 and

100. This means finding the constant c for each quarterback such that
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1

c

∫ 100

0

f̂(x)dx = 1.

Figure 9 illustrates the effect this could have on the analysis where the differences are en-

hanced where density is largest. If only one curve is of interest then this may be unnecessary,

but in comparing many densities the heights do matter.
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Figure 8: (a) Blake Bortles’ estimated QBR density showing that the area between 0 and 100
(shaded in black) integrates to 0.927. (a) Peyton Manning’s estimated QBR density showing
that the area between 0 and 100 (shaded in black) integrates to 0.879.
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Figure 9: The esimated QBR densities for both Blake Bortles (red lines) and Peyton Manning
(black lines). The clipped QBR densities are solid lines and the lifted estimates that integrate
to 1 between 0 and 100 are dashed lines.
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3.5 QBR densities

Davis and Lopez did not report how they created the density curves they used for the

analysis, and as a result, they are difficult to recreate. It is also unknown what resolution

they used to evaluate their density curves. For the purposes of this analysis, the density

curves were evaluated at 100 evenly spaced points from 0 to 100. As for the bandwidth used

by Davis and Lopez in their density estimates, it is also unknown if the bandwidths were

subjectively selected or decided by the software defaults, or if the bandwidths were equal

across each density curve. If they were to use the default choice in R, then the bandwidth

changed across quarterbacks since the number of games played varied drastically. For the

purposes of replicating the work of Davis and Lopez, a bandwidth of 15 appeared to get

a close match to many, but not all, of the density curves in their report. The unknown

choice of kernel used by Davis and Lopez further complicates recreation of their results. The

densities they included appeared rather smooth so we selected the Gaussian kernel, which is
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Figure 10: The estimated QBR densities of all 46 quarterbacks using a Gaussian kernel, 100
evaluation points between 0 and 100, and a bandwidth of 15 for each. The QBR densities
were not lifted.
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often the default choice for density estimates, for this analysis. The densities, which are not

lifted due to our uncertainty that Davis and Lopez considered this, are shown in Figure 10.

There do appear to be some groupings of curves with many having modes occurring at QBRs

of either 20, 50, or 80, but it is difficult to determine exactly how many clusters may exist.

4 Clustering

As an illustration of conventional clustering methods, an example involving all of the players

looking to be drafted by NFL teams from a single year will be considered. These players are

all looking to play a certain position, and the characteristics required to play the position are

not the same for each position; but perhaps the builds of two players are not that different

despite playing different positions. For example, a wide receiver and a cornerback (defends

the wide receiver) may have similar characteristics such as height, weight, and speed. Of

interest is whether there are only certain types of builds of football players. A cluster analysis

will be used to find groups of players that are considered similar on a multitude of physical

attributes and to explore whether these characteristics relate to player positions.

4.1 Choice of Dissimilarity

The way in which the observations are clustered is determined by the dissimilarity matrix.

The “dissimilarity” between two observations is a way of discerning how they differ. The

smaller the dissimilarity, the more like each other the observations are. Take, for example,

the data collected on players who participated in the 2015 Combine [5]. There were 174

players that had their position, height (in inches), weight, forty yard dash, vertical jump,

broad jump, and reps on the bench press recorded. The one quarterback and two fullbacks

in the dataset were removed to trim the sample to 171 players and the three strong safeties

were re-labeled to free safeties to create a set of player position categories.
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Now, if the focus is on the quantitative variables (ignoring position), then there are six

dimensions of a player. It is possible, but not always useful, to plot each observation in

three dimensions. A good starting point to understanding the parameter space is to create

scatterplots for each pairwise comparison, for example see Figure 11 where heights and

weights are displayed by position. With six dimensions there are 15 pairwise comparisons

that can be visualized using a scatterplot matrix as seen in Figure 12. There are many

strong correlations, either negative or positive, between variables as calculated in the lower

diagonal. Many linear relationships can also be seen between the variables. Some distinct

groups are present in these plots but it is hard to see them clearly.
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Figure 11: The heights and weights of each player plotted against each other using his position
to determine color and plotting character.

As these data (and the QBR discussed in Section 5) are quantitative variables or being

treated as quantitative, the discussion here will focus on measures of dissimilarity of quan-

titative variables that are metrics (or distance measures), for alternatives refer to Härdle

and Simar (2012) or Hastie, Tibshirani, and Friedman (2001). Variables are often standard-

ized (by subtracting the mean value over all the observations and dividing by the standard
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deviation of observed values of that variable) prior to forming the distance matrix.
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Figure 12: Upper diagonal: Pairwise scatterplots for each possible pair of variables. Diagonal:
histograms of the variables. Lower Diagonal: correlations between variables.

In multivariate settings, this is beneficial as the ranges and different units of the variables

could impact the results, putting larger emphasis on the variables with higher ranges. Take

for example the weight (in pounds) of NFL players vs the hand size (in inches) of the

players. The range of weight is between roughly 175 and 350 lbs while the hand size is
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between roughly 7 and 12 inches; a distance between two players would mostly be taking the

weights of the players into account if the relative variability is not made comparable across

the two variables.

The most common distance measures are Lr-norms where r ≥ 1. In an Lr-norm the

distance dij between two observations i and j can be computed across the P variables

(Härdle, 2003) by

dij = ||xi − xj||r =

(
P∑
k=1

|xik − xjk|r
)1/r

. (3)

The benefit of Lr-norms is that being distance metrics they are non-negative (d(x, y) ≥

0), they obey the identity of indiscernibles (d(x, y) = 0 if and only if x = y), they obey

symmetry (d(x, y) = d(y, x)), and they obey the triangle inequality (d(x, z) ≤ d(x, y) +

d(y, z)) (Wikipedia, Metric). When r = 1, the norm is called the ‘City Block’ or ‘Manhattan’

distance as using the absolute values is similar to travelling on a city block, i.e., determine

how many blocks up and how many blocks over are being traveled, accumulating absolute

differences on each variable. The Euclidean distance is calculated when r = 2. In two

dimensions, the Euclidean distance is calculating the hypotenuse of a triangle or walking

straight through the building to the chosen destination instead of walking the streets. It is

common, and the default of the dist() function in R (R Core Team, 2016), to apply the

Euclidean distance.

After a decision of which measure is to be used, a n × n dissimilarity matrix can be

made, where n is the number of observations in the data set. The upper (or lower) diagonal

portion of the matrix will be all that is necessary to focus on. An example of a distance

matrix is given in Table 3 between the first 5 observations of the Combine data using only

the six standardized quantitative dimensions and the L2-norm. The symmetry of Euclidean

distance is ovious in this result. Ajayi and Alexander were most similar and Alford and

Abdullah were most different, among the five players.
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A. Abdullah J. Ajayi K. Alexander M. Alford J. Allen
A. Abdullah 0.00 3.10 3.75 4.84 4.21
J. Ajayi 3.10 0.00 1.37 3.99 1.79
K. Alexander 3.75 1.37 0.00 4.30 2.24
M. Alford 4.84 3.99 4.30 0.00 3.28
J. Allen 4.21 1.79 2.24 3.28 0.00

Table 3: Euclidean distance matrix between five players in the Combine dataset using stan-
dardized variables.

4.2 Choice of Algorithm

There are many types of algorithms for clustering: most popular are hierarchical clustering,

k-means clustering, and model based clustering (Everitt & Hothorn, 2011).

4.2.1 Hierarchical Clustering

In hierarchical clustering, the observations are taken through several partitioning steps ei-

ther by agglomerative (bottom-up) or divisive (top-down) methods (Hastie, Tibshirani, &

Friedman, 2001). When the algorithm is finished, a dendrogram can be displayed to help

the researcher determine an optimal cut point from which the clusters will result. A den-

drogram is a tree-like structure that shows the steps between the first (or last) partition (all

observations clustered together) to the final (or initial) partition (all observations belong to

their own cluster). Looking from the top to the bottom of the dendrogram, it is possible

to see where the splits occurred between clusters. The “height” that the split occurs on

the dendrogram is proportional to the value of the inter-group dissimilarity, which is mono-

tone increasing for merged clusters, between the clusters at the split (Hastie, Tibshirani, &

Friedman, 2001).

In order for the algorithm to perform its duties, an inter-group dissimilarity needs to be

defined. One approach is to apply the nearest-neighbor technique or single linkage agglomer-

ative clustering. This method computes all pairwise dissimilarities between the observations

in cluster 1 and all the observations in cluster 2 and then records the smallest of the dissimi-
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larities. This approach can lead to extended, trailing clusters from the algorithm combining

single observations one at a time (James et al., 2013). Applying this method on the Com-

bine data results in the dendrogram shown in Figure 13. Single linkage also is susceptible to

classifying differing groups into one cluster if they are not well separated (Härdle & Simar,

2003). The single linkage approach created many singleton clusters from this data set where

few truly unique player types were expected so this cluster solution does not seem ideal here.
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Figure 13: A dendrogram of the Combine data using single linkage.

Another hierarchical approach is the complete linkage agglomerative technique (or the

furthest-neighbor technique (Hastie, Tibshirani, & Friedman, 2001)). This method computes

all pairwise dissimilarities between the observations in cluster 1 and all the observations in

cluster 2 to represent the distance between the clusters, but then records the largest of the

dissimilarities (James et al., 2013). Like single linkage before, a benefit to this approach is

that it is invariant under monotone transformations of the inter-individual distances (Everitt

& Hothorn, 2011). It also tends to produce larger clusters than single linkage and is less

prone to chaining. Applying this technique to the Combine data results in the dendrogram

shown in Figure 14. If a height of 5 was chosen to cut the dendrogram, then five clusters
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would result, as displayed in the rectangles. From there, one could inspect the data to see

what observations were clustered together.
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Figure 14: A dendrogram of the Combine data using complete linkage.

A third common linkage method is average linkage. Using the pairwise dissimilarities

as calculated before for either the single- or complete-linkage algorithms, it is also possible

to use the average dissimilarity between the clusters, and merge clusters that are closest on

average. This approach was taken to form the dendrogram in Figure 15 for the Combine

data. A cut at a height of 3 resulted in three clusters that are perhaps not optimal. Cutting

any lower in the dendrogram would result in some clusters with very few players.

The last hierarchical clustering agglomeration method that will be discussed here is called

Ward’s method. Ward’s method relies on joining groups that results in the smallest increase

in heterogeneity (measured via the error sum of squares or ESS). The hope is that this

increase is not too drastic. At each step of the algorithm, every possible pairing of clusters is

considered and then the merger that is chosen is the one that provided the smallest increase

in the ESS. Figure 16 displays the dendrogram that was the result of Ward’s algorithm for

the Combine data. A cut at a height of 7 resulted in six clusters as shown by the rectangles.
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Figure 15: A dendrogram of the Combine data using group average linkage.
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Figure 16: A dendrogram of the Combine data using Ward’s algorithm.
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The cluster solution from Ward’s method vs. the number of times a player at a position

that were placed in each cluster are displayed in Table 4. For example, cluster 6 is composed

of 2 DE’s (defensive ends), 6 ILB’s (inside linebackers), 5 OLB’s (outside linebackers), 2

RB’s (runningbacks), 3 TE’s (tight ends), and a WR (wide receiver). Cluster 3 is composed

similarly to 3. Clusters 1 and 2 contain the same positions to each other, as do clusters 4

and 5, this would make it appear that there may be different types of players that play the

same positions.

1 2 3 4 5 6
C 0 0 0 4 1 0

CB 11 10 0 0 0 0
DE 0 0 9 1 0 2
DT 0 0 0 12 0 0
FS 5 5 0 0 0 0

ILB 3 1 2 0 0 6
NT 0 0 0 5 0 0
OG 0 0 0 8 3 0

OLB 4 0 5 0 0 5
OT 0 0 0 7 5 0
RB 8 13 0 0 0 2
TE 0 0 5 0 0 3

WR 10 10 5 0 0 1

Table 4: Table showing the positions of players in each cluster using Ward’s method.

The cluster solution from average linkage had only 3 clusters and the results are shown

in Table 5. The results were not very satisfactory with cluster 1 containing only 7 of the 171

players. Upon inspection, the seven players were all in the upper 25% in vertical jump and

broad jump (Table 6 and Table 7). Many of the players in this cluster had a fast forty yard

dash time (but none were the fastest) suggesting that they are also quick relative to the rest

of the players. The cluster solution from Ward’s method appears more interesting despite

clusters 1 and 2, 3 and 6, and 4 and 5 sharing similar compositions of player types.

In comparing clusters 1 (Table 8) and 2 (Table 9) from the solution obtained using Ward’s

method, cluster 2 contains players that on average are shorter and smaller in size with slower

forty yard times and shorter jumping distances on average. Likewise, cluster 6 (Table 11)
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1 2 3
C 0 0 5

CB 1 20 0
DE 0 12 0
DT 0 0 12
FS 0 10 0

ILB 0 12 0
NT 0 0 5
OG 0 0 11

OLB 1 13 0
OT 0 0 12
RB 3 20 0
TE 0 8 0

WR 2 24 0

Table 5: Table showing the positions of players in each cluster using average linkage.

height weight fortyyd vertical broad bench
1 Min. :67.00 Min. :176.0 Min. :4.310 Min. :23.5 Min. : 90.0 Min. : 7.00
2 1st Qu.:72.00 1st Qu.:203.5 1st Qu.:4.570 1st Qu.:31.0 1st Qu.:109.5 1st Qu.:16.00
3 Median :74.00 Median :236.0 Median :4.690 Median :33.5 Median :116.0 Median :20.00
4 Mean :73.65 Mean :245.6 Mean :4.786 Mean :33.8 Mean :115.0 Mean :20.33
5 3rd Qu.:76.00 3rd Qu.:294.5 3rd Qu.:5.010 3rd Qu.:37.0 3rd Qu.:121.0 3rd Qu.:25.00
6 Max. :80.00 Max. :355.0 Max. :5.640 Max. :45.0 Max. :139.0 Max. :36.00

Table 6: Summary statistics on each dimension of all 171 players in the Combine data.

position height weight fortyyd vertical broad bench
1 RB 69.00 205 4.60 42.50 130.00 24.00
8 OLB 75.00 246 4.53 41.00 130.00 35.00

23 WR 73.00 212 4.43 41.00 131.00 23.00
28 WR 74.00 213 4.35 45.00 139.00 18.00
86 RB 73.00 224 4.50 41.50 127.00 25.00

137 CB 72.00 201 4.44 37.50 130.00 26.00
171 RB 71.00 223 4.60 41.00 121.00 25.00

Table 7: Data on the 7 players in cluster 1 from the cluster solution using average linkage.

has slightly smaller players in height and in size than cluster 3 (Table 10) does; cluster 3 also

appears to be more athletic than cluster 6 with cluster 6 only being more skilled at bench

press on average. Cluster 5 (Table 13) has taller and bigger players on average than cluster

4 (Table 12) who are less athletic, performing worse in each of the other four dimensions.

Clusters 1 and 2 tend to have smaller players in weight than the other four while clusters

4 and 5 tend to have larger players in weight than the other 4. The names for the types of

players could then be “small-athletic” (cluster 1), “small-moderate” (cluster 2),
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height weight fortyyd vertical broad bench
1 Min. :69.00 Min. :183.0 Min. :4.310 Min. :35.00 Min. :117.0 Min. : 7.0
2 1st Qu.:71.00 1st Qu.:196.0 1st Qu.:4.440 1st Qu.:37.00 1st Qu.:121.0 1st Qu.:16.0
3 Median :72.00 Median :205.0 Median :4.530 Median :38.00 Median :124.0 Median :18.0
4 Mean :72.07 Mean :209.3 Mean :4.523 Mean :38.35 Mean :124.7 Mean :18.9
5 3rd Qu.:73.00 3rd Qu.:223.0 3rd Qu.:4.600 3rd Qu.:40.00 3rd Qu.:129.0 3rd Qu.:22.0
6 Max. :75.00 Max. :246.0 Max. :4.880 Max. :45.00 Max. :139.0 Max. :35.0

Table 8: Summary measures of the 6 dimensions on the players in cluster 1 determined by
Ward’s method.

height weight fortyyd vertical broad bench
1 Min. :67.00 Min. :176.0 Min. :4.430 Min. :29.00 Min. :108.0 Min. : 7.00
2 1st Qu.:69.00 1st Qu.:192.5 1st Qu.:4.545 1st Qu.:33.00 1st Qu.:114.0 1st Qu.:11.50
3 Median :70.00 Median :198.0 Median :4.600 Median :33.50 Median :116.0 Median :15.00
4 Mean :70.67 Mean :201.7 Mean :4.590 Mean :33.99 Mean :116.5 Mean :15.13
5 3rd Qu.:72.00 3rd Qu.:213.0 3rd Qu.:4.630 3rd Qu.:35.50 3rd Qu.:120.0 3rd Qu.:18.50
6 Max. :74.00 Max. :231.0 Max. :4.800 Max. :37.00 Max. :125.0 Max. :26.00

Table 9: Summary measures of the 6 dimensions on the players in cluster 2 determined by
Ward’s method.

height weight fortyyd vertical broad bench
1 Min. :74.00 Min. :214.0 Min. :4.460 Min. :32.50 Min. :109.0 Min. :12.00
2 1st Qu.:75.00 1st Qu.:238.5 1st Qu.:4.612 1st Qu.:34.50 1st Qu.:118.0 1st Qu.:16.25
3 Median :76.00 Median :248.0 Median :4.725 Median :36.25 Median :120.0 Median :20.00
4 Mean :75.88 Mean :249.0 Mean :4.699 Mean :35.98 Mean :119.5 Mean :20.00
5 3rd Qu.:77.00 3rd Qu.:261.8 3rd Qu.:4.790 3rd Qu.:37.38 3rd Qu.:121.0 3rd Qu.:24.00
6 Max. :79.00 Max. :271.0 Max. :4.930 Max. :40.50 Max. :127.0 Max. :28.00

Table 10: Summary measures of the 6 dimensions on the players in cluster 3 determined by
Ward’s method.

height weight fortyyd vertical broad bench
1 Min. :71.00 Min. :218.0 Min. :4.610 Min. :27.50 Min. :100.0 Min. :16.00
2 1st Qu.:72.00 1st Qu.:236.5 1st Qu.:4.780 1st Qu.:30.00 1st Qu.:110.0 1st Qu.:19.00
3 Median :74.00 Median :247.0 Median :4.880 Median :31.00 Median :111.0 Median :20.00
4 Mean :74.11 Mean :247.6 Mean :4.866 Mean :30.82 Mean :110.4 Mean :20.68
5 3rd Qu.:75.50 3rd Qu.:259.5 3rd Qu.:4.950 3rd Qu.:32.00 3rd Qu.:112.0 3rd Qu.:23.00
6 Max. :78.00 Max. :275.0 Max. :5.040 Max. :35.00 Max. :115.0 Max. :30.00

Table 11: Summary measures of the 6 dimensions on the players in cluster 6 determined by
Ward’s method.

height weight fortyyd vertical broad bench
1 Min. :73.00 Min. :269.0 Min. :4.860 Min. :26.50 Min. : 95.0 Min. :20.00
2 1st Qu.:74.00 1st Qu.:304.0 1st Qu.:5.060 1st Qu.:29.00 1st Qu.:103.0 1st Qu.:24.00
3 Median :76.00 Median :307.0 Median :5.150 Median :30.50 Median :106.0 Median :26.00
4 Mean :75.84 Mean :310.2 Mean :5.162 Mean :30.22 Mean :106.5 Mean :27.32
5 3rd Qu.:77.00 3rd Qu.:318.0 3rd Qu.:5.250 3rd Qu.:31.50 3rd Qu.:111.0 3rd Qu.:30.00
6 Max. :79.00 Max. :339.0 Max. :5.640 Max. :34.00 Max. :117.0 Max. :36.00

Table 12: Summary measures of the 6 dimensions on the players in cluster 4 determined by
Ward’s method.

height weight fortyyd vertical broad bench
1 Min. :76.00 Min. :303 Min. :5.250 Min. :23.50 Min. : 90.00 Min. :16.00
2 1st Qu.:76.00 1st Qu.:313 1st Qu.:5.310 1st Qu.:24.00 1st Qu.: 95.00 1st Qu.:17.00
3 Median :77.00 Median :318 Median :5.340 Median :26.50 Median : 97.00 Median :20.00
4 Mean :77.44 Mean :322 Mean :5.366 Mean :26.89 Mean : 96.22 Mean :20.89
5 3rd Qu.:78.00 3rd Qu.:327 3rd Qu.:5.390 3rd Qu.:29.00 3rd Qu.: 97.00 3rd Qu.:23.00
6 Max. :80.00 Max. :355 Max. :5.570 Max. :32.00 Max. :101.00 Max. :27.00

Table 13: Summary measures of the 6 dimensions on the players in cluster 5 determined by
Ward’s method.

“medium-athletic” (cluster 3), “medium-moderate” (cluster 6), “large-athletic” (cluster 4),

and “large-moderate” (cluster 5).

A drawback to the hierarchical clustering methods is that once an observation has been
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allocated to a cluster it cannot be reallocated to another cluster. This can result in observa-

tions that are more similar to each other being placed in separate clusters and being grouped

with less similar observations. Another issue is the need to determine an appropriate cut

on the dendrogram which forms the clusters; this is typically done where the height changes

are small for splitting clusters. Other clustering methods are available that alleviate at least

the first issue.

4.2.2 k-means Clustering

The k-means algorithm is an optimization, non-hierarchical clustering algorithm. Prior to

starting the algorithm, the number of clusters (k) must be defined. The algorithm then,

perhaps randomly, assigns the observations to exactly one of the k clusters. It then loops

through computing the centroid (located at the mean of each of the P dimensions in the

cluster Pk) for each of the l = 1, . . . , k clusters and moving observations to the cluster whose

centroid is nearest until the within-group sums of squares (WGSS) (Everitt & Hothorn,

2011),

WGSS =
P∑
j=1

k∑
l=1

∑
i∈Pl

(
xij − x(l)j

)2
, (4)

has been minimized. Equation 4 shows the formula for the WGSS where x
(l)
j is the mean

of observations in the lth partition on variable j. In theory, the algorithm would find every

possible partition of the n observations into the the k clusters. However, the number of

partitions becomes very large, very fast depending on k and n and computational speeds

necessitate a partial search. The algorithm must randomly choose the initial partitions and

then move observations between clusters if the change leads to the greatest improvement in

the WGSS.

Everitt and Hothorn (2011) mention that possible drawbacks to the k-means algorithm
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are that scaling the variables may result in different clusters than the raw data (not unique

to k-means), that the algorithm imposes a spherical structure on the clusters even if the

clusters are truly of some other shape, and that repeated runs of the algorithm can produce

different solutions. Hastie, Tibshirani, and Friedman (2001) also warn that the clusters

formed from different k’s need not be nested and that the clusters made with k = 4 may

not be sub-clusters of the ones formed when k = 3 . A further drawback, with a reasonable

solution, is that the k-means algorithm requires a set number of clusters k to be established

prior to starting. A reasonable approach is to create a plot of the change in the WGSS for

each number of clusters. A choice of k would then be determined by the last “significant”

change in the WGSS.

Like before, the scaled Combine data are used to demonstrate the algorithm. From

Figure 17 it seems reasonable to choose four (vertical dashed line) clusters based on the

relatively slow decline in total WGSS beyond four clusters. After determining the number

of clusters, the percent of the variation that is explained by the clusters provides a summary

of the quality of the cluster solution. In this case, the percent of variation explained by the

four clusters was 68.2%. Perhaps that was not ideal and if we wanted clusters that explain

closer to 80%, then at least 10 clusters would be necessary, as shown in Figure 18.
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Figure 17: The total within group sums of squares plotted against the number of clusters (1
to 20) for the scaled Combine data.
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Figure 18: The percent of variation that is explained by the model for the number of clusters
(2 to 20).

The results from one particular k-means run on the Combine data resulted in the cluster

solution given in Table 14. The results are not as easily interpretable as the solution found

from Ward’s method. From knowledge of football, it is hard to believe a wide receiver, an

offensive tackle, and a defensive tackle would belong to the same cluster as was the case in

cluster 3. The cluster solution obtained using Ward’s method appears to have performed

better than the k-means algorithm or at least produced more easily explained results.

1 2 3 4
C 5 0 0 0

CB 0 10 0 11
DE 0 1 11 0
DT 10 0 2 0
FS 0 6 0 4

ILB 0 4 7 1
NT 5 0 0 0
OG 11 0 0 0

OLB 0 4 9 1
OT 11 0 1 0
RB 0 9 2 12
TE 0 1 7 0

WR 0 12 3 11

Table 14: Table showing the positions of players in each cluster using the k-means algorithm
with 4 clusters.
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4.2.3 Choice of Clustering Method

The k-means algorithm can be a useful approach to clustering. However, it did not appear

to perform as well as the hierarchical approach using Ward’s method in this case. In other

situations, the k-means algorithm could perform better. For the Combine data, it would

appear that six types of players exist that are entering the NFL as determined from Ward’s

method.

There is a similar algorithm for more robust optimization using the medoids instead of

the centroids to group the responses called k-medoids or k-medians algorithm (see Hastie,

Tibshirani, and Friedman (2001), for example). Another method is model-based clustering,

also known as latent class cluster analysis due to the groups being the latent or unobserved

variable. For more details on model-based clustering refer to Everitt and Hothorn (2011).

5 Methods used for QBR Clustering

5.1 Replicating Davis and Lopez

For the portion of the analysis where we attempt to replicate the work of Davis and Lopez,

some choices were made for clustering QBR densities of each quarterback. Evaluated esti-

mated densities at each grid point from QBRs of 0 to 100 are treated as the “variables” and

scaling these “variables” did not make sense because all responses are on the same density

scale. The k-means algorithm was employed with 10 clusters to parallel the work of Davis

and Lopez. The algorithm defaults to partitioning overall sums of squares using a Euclidean

distance approach.

To attempt to match the results of Davis and Lopez, the QBR densities were estimated

using Gaussian kernels which were not adjusted to integrate to 1 between QBRs of 0 and

100 as discussed in Section 3.4. Because no information was provided on bandwidth and the
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number of evaluation points on the densities, we explored all combinations of bandwidths

between 1 and 20 and evaluation point grids with 5-15, 20, 30,..., 100, and 200, 300, ..., 1000.

The k-means algorithm was run with ten centers for each combination of bandwidth and

evaluation grid. The different solutions are compared using the adjusted Rand index (ARI)

using the adjustedRandIndex() function from the mclust R package was used (Fraley &

Raftery, 2002; Fraley et al., 2012). The adjusted Rand index provides an agreement measure

that is corrected for chance that provides 0 if the agreement is no more than would be

expected by chance and 1 if the agreement is perfect.

Figure 19 shows the results for the ARIs of the k-means cluster solutions with different

combinations of bandwidth and evaluation grids. The largest ARI score that occurred was

0.55 for a bandwidth of 13 with 100 evaluation points. However, it is not certain that

these numbers would be reproduced if the k-means algorithm were run again as k-means is

influenced by the random starting points. It was apparent that the number of evaluation

points from each QBR distribution had less effect on matching their cluster solution than

the bandwidth choice used in the density estimator. From the plot, it appeared that a
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Figure 19: The Adjusted Rand Index between cluster solutions found using the kmeans al-
gorithm with 10 groups on QBR distributions and the cluster solution in the article plotted
against the bandwidth of the QBR distributions and colored by the number of evaluation
points.

30



Anderson Clustering NFL Quarterbacks using QBR Distributions

bandwidth greater than 8 for each QBR distribution found cluster solutions that were rela-

tively similar to the article cluster solution.

Based on these results, a ten cluster k-means cluster analysis of the QBR distributions

(not lifted) with bandwidths of 10 and grid sizes of 100 was performed. A plot showing all

the QBR distributions (dashed lines) colored by the cluster solution is provided in Figure 20.

The pointwise mean QBR distribution of each cluster is plotted with solid lines. The cluster

solution was unsatisfying with three groups of size 8, two groups of size 6, one of size 4,

two of 2, and two with only 1 quarterback (Peyton Manning and Blake Bortles in singleton

clusters). Davis and Lopez did not provide any information on why they chose ten clusters.

We could consider other numbers of clusters with k-means but chose to explore the benefits

of hierarchical clustering for clustering density curves.
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Figure 20: All QBR distributions (dashed lines) colored by the cluster solution of the kmeans
algorithm with 10 groups. The pointwise mean QBR distributions of each cluster are plotted
with solid, thick lines.
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5.2 Hierarchical clustering of QBR densities

As mentioned previously (Section 4), when performing hierarchical clustering it is necessary

to form a dissimilarity matrix, here it is to compare each QBR distribution. Densities are

continuous functions of, here, QBR that are defined from 0 to 100 and integrate (if “lifted”)

to 1 over that interval. The distance metrics used should reflect the specific nature of density

curves. In this case, two metrics were considered to compare distributions f(t) and g(t): the

L2-norm

d(f(t), g(t)) =

√∫ 100

0

(f(t)− g(t))2dt

and the Kullback-Leibler divergence

d(f(t), g(t)) = Ef(t)(log(f(t)/g(t))) =

∫ 100

0

log(f(t)/g(t)) · f(t)dt.

The Kullback-Leibler divergence is not symmetric as d(f(t), g(t)) 6= d(g(t), f(t)), but we can

use a symmetric version (Febrero-Bande & Oviedo de la Fuente, 2012) of 0.5 · [d(f(t), g(t)) +

d(g(t), f(t))]. In order to create the distance matrix to perform the hierarchical clustering

the R package fda (Ramsay et al., 2014) was used to create a continuous representation

of the densities so that the functions metric.lp() (for L2-norm) and metric.kl() (for

Kullback-Leibler divergence) from the R package fda.usc (Febrero-Bande & Oviedo de la

Fuente, 2012) could be used to form the distance matrices.

The L2-norm (Euclidean metric) was chosen for its proven validity in most clustering

situations involving quantitative data and the Kullback-Leibler metric was chosen for its

proven validity in comparing distributions that has ties to Akaike’s Information Criterion

(see Cavanaugh (1999) for details). The L2-norm was of primary interest to calculate the

distance between distributions, but the Kullback-Leibler divergence could include additional

information of interest. Figure 21 shows that they contain similar information but compare

QBR densities in different ways since they are not following the 1-1 line.
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Figure 21: A comparison of the distance metrics used to compare QBR distributions. The
red (dashed) line is the 1-1 line.

6 Results

Performing hierarchical clustering using Ward’s agglomeration method on the dissimilarity

matrix formed using the L2-distance between the lifted QBR distributions yields the den-

drogram in Figure 22 (a). A height of 0.06 seemed to be an appropriate place to cut the

dendrogram to form the clusters. Figure 22 (b) shows the QBR distributions of all quarter-

backs (dashed lines) that are colored by the cluster solution formed from this cut with each

clusters pointwise mean QBR distribution represented with solid lines. The cluster names

we have provided do have some subjectivity to them and are inspired by Davis and Lopez

as well as some knowledge of the quarterbacks.

The “Elites” group feature quarterbacks such as Peyton Manning or Tom Brady who

are known to be top-of-the-charts quarterbacks. In looking at the pointwise mean QBR

distribution for the “Elites”, we can see that quarterbacks in this category typically perform

well with the single mode being at a QBR above 80 which has a density close to 0.02.

The “Second-Tiers” group contain quarterbacks that typically perform well, like Andrew

Luck or Cam Newton, but not as well as the “Elites” (at least not as of yet, for some). They
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Figure 22: (a) The dendrogram formed from Ward’s agglomeration method applied to the L2-
distances between the QBR distributions. A cut at a height of 0.06 results in 5 clusters. (b)
The QBR distributions for all quarterbacks (dashed) colored by the cluster solution formed
from the cut at height of 0.06. The solid lines are the pointwise mean QBR distributions for
each cluster.

34



Anderson Clustering NFL Quarterbacks using QBR Distributions

too have a mean QBR distribution with a single mode occurring at a QBR above 80, however,

the density is not as high as for the “Elites”. This would suggest that they are capable of

having performances that rank among the top quarterbacks in the league, but have a few

more bad games than the “Elites”.

The “High Expectations” group is the first group with a mean QBR distribution that is

bi-modal. The naming of this group is due to it containing quarterbacks such as Jay Cutler

or Joe Flacco, who, despite being paid very well, often do not perform as expected. The

bi-modal shape of the mean QBR distribution helps illustrate this as one mode occurs at a

QBR of around 80 and the other around 20, with the former mode having higher density.

Quarterbacks in this group often have really good games with several poor performances in

the mix.

The group we have labeled as “Some Potential” was named for it containing quarterbacks

such as Kyle Orton or Alex Smith who have shown that they can perform well if given the

right offense to match their talent. This group, on average, has a fairly flat distribution

suggesting equal probability of the quarterback performing well or poorly. The mode for

this group’s mean QBR distribution is around 40, which is not great but also is not the

worst.

The final group from this cluster solution we have named “Still Around”. It was named for

the fact that, on average, these quarterbacks do not play very well but do have the occasional

good game that have inspired teams to keep them around, often for lack of anyone else. This

includes quarterbacks such as Brian Hoyer or Mark Sanchez, who have never quite had the

blame placed on them for their respective teams poor records. The mean QBR distribution

for this group is another bi-modal distribution with modes occurring at about 15 and 75 on

the QBR scale, with the mode at 15 having a higher density. The shape of the mean QBR

distribution exposes the tendency of this group to perform poorly, but with the occasional

good game.
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The cut of 0.06 we believe has resulted in clusters that subjectively appear appropriate

with objective evidence to support the similarities between quarterbacks in each cluster. A

cut made higher would have grouped the “Second-Tiers” cluster and the “High Expectations”

cluster, which we feel contain quarterbacks that do perform differently as evidenced by the

mean QBR distributions for each cluster. On the other hand, a cut made lower would have

resulted in splitting Blake Bortles into his own cluster away from the “Still Around” cluster,

which we didn’t feel was necessary as the shape of his distribution agreed well with that of

the mean QBR distribution for that cluster. The lower cut could also have split the “Some

Potential” cluster in two causing quarterbacks we believe to be similar in nature (Orton and

Smith, or Matt Hasselback and Matthew Stafford) to be separated, remembering that in

hierarchical clustering a quarterback is not able to change clusters despite being similar to

a quarterback in another cluster.

Figure 23 (a) shows the dendrogram after performing hierarchical clustering via Ward’s

agglomeration method on the dissimilarity matrix formed using the symmetric Kullback-

Leibler divergence between the lifted QBR distributions. A height of 0.15 was deemed

appropriate to cut the dendrogram, which formed six clusters. Upon careful inspection of

the labels, it was apparent that the sixth cluster formed was Bortles forming his own cluster.

The remaining clusters were the same as before (with the “Still Around” group missing

Bortles). This equivalence is shown in the contingency table (Table 15) between the two

cluster

K-L Clusters
- 1 2 3 4 5 6

L2 Clusters

1 5 0 0 0 0 0
2 0 16 0 0 0 0
3 0 0 9 0 0 0
4 0 0 0 1 0 6
5 0 0 0 0 9 0

Table 15: A contingency table comparing the cluster solution from the hierarchical cluster-
ing using the L2-norm (rows) as a dissimilarity between QBR distributions vs. using the
Kullback-Leibler divergence (columns) as a dissimilarity between QBR distributions.
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solutions. And if a six-cluster solution had been selected with L2 distances, the clusters

would perfectly agree.

Figure 23 (b) shows the QBR distributions of all quarterbacks (dashed lines) that are

colored by the cluster solution formed from this cut with each cluster’s medoid QBR distri-

bution represented with solid lines. The medoid is the distribution that is most similar to all

other distributions in its cluster; compared to the other quarterbacks in the cluster, it has

the minimum average distance to all other QBR distributions in said cluster. Figure 23 (b)

includes the name of the quarterback whose QBR distribution is the medoid for that group.

Each of the shapes are similar to what was shown in Figure 22 with the “Still Around” group

having their lower mode flattened due to the removal of Bortles (and it being a medoid QBR

distribution and not a pointwise mean QBR distribution). While, the representative distri-

bution for the “Still Around” cluster hints at performance slightly better than previously

suggested as the poor games appeared to be evened out a little (compared to the pointwise

mean from before), the distribution still looks fairly similar to when Bortles belonged to the

cluster.

In going back to the dendrogram (Figure 23 (a)), in order to allow for Bortles to be

included in the “Still Around” cluster a cut would have to be made higher. This would have

resulted in the clusters “Second-Tiers” and “High Expectations” forming one cluster. The

shapes of the representative QBR distributions for each appeared different (one unimodal,

the other bi-modal) and probably should not be joined. A cut lower in the dendrogram

would have resulted in the splitting of the “Some Potential” group which we didn’t feel was

subjectively appropriate.

37



Anderson Clustering NFL Quarterbacks using QBR Distributions

M
ike

 G
len

no
n

Ca
rs

on
 P

alm
er

Do
no

va
n 

M
cN

ab
b

M
at

th
ew

 S
ta

ffo
rd

Ky
le 

Or
to

n
An

dy
 D

alt
on

Ja
ke

 L
oc

ke
r

Ry
an

 Ta
nn

eh
ill

Ch
ad

 H
en

ne
M

at
t C

as
se

l
Ry

an
 F

itz
pa

tri
ck

EJ
 M

an
ue

l
M

at
t H

as
se

lbe
ck

Ja
so

n 
Ca

m
pb

ell
Al

ex
 S

m
ith

Jo
sh

 F
re

em
an

Bl
ak

e 
Bo

rtl
es

Br
ian

 H
oy

er
Jo

sh
 M

cC
ow

n
Da

vid
 C

ar
r

De
re

k A
nd

er
so

n
Ge

no
 S

m
ith

M
ar

k S
an

ch
ez

Pe
yto

n 
M

an
nin

g
Dr

ew
 B

re
es

M
at

t R
ya

n
Aa

ro
n 

Ro
dg

er
s

To
m

 B
ra

dy
Ph

ilip
 R

ive
rs

Ca
m

 N
ew

to
n

Co
lin

 K
ae

pe
rn

ick
An

dr
ew

 L
uc

k
Ru

ss
ell

 W
ils

on
Te

dd
y B

rid
ge

wa
te

r
M

at
t S

ch
au

b
Be

n 
Ro

et
hli

sb
er

ge
r

To
ny

 R
om

o
El

i M
an

nin
g

Jo
e 

Fl
ac

co
Da

vid
 G

ar
ra

rd
Ja

y C
ut

ler
M

ike
 V

ick
Br

et
t F

av
re

Ro
be

rt 
Gr

iffi
n

Ni
ck

 F
ole

s
Vi

nc
e 

Yo
un

g0.
0

0.
2

0.
4

0.
6

0.
8
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Figure 23: (a) The dendrogram formed from Ward’s agglomeration method applied to the
symmetric Kullback-Leibler divergences between the QBR distributions. A cut at a height of
0.15 results in 6 clusters. (b) The QBR distributions for all quarterbacks (dashed) colored
by the cluster solution formed from the cut at height of 0.15. The solid lines are the medoid
QBR distributions for each cluster.
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7 Conclusion

This approach to clustering distributions proved to be a useful technique at comparing not

only the means of the distributions but also the shapes of the distributions. In referencing

Figure 22 (b), if we were to compare the means of the QBR distributions that ended up in

the “Some Potential” and “High Expectations” clusters, then we might not have found that

quarterbacks in these two groups differed. However, in taking into account the shapes of

the distributions, the differences between the two groups became apparent with one being

bi-modal and the other being almost uniform across the range of QBR.

As was demonstrated throughout, to apply this method requires many decisions to be

made that could potentially affect the results: deciding on a density estimator, choosing a

metric, choosing a clustering algorithm, and determining the number of groups. We were

unable to reproduce the results established by the analysis of Davis and Lopez, which could

have been the result of any of these choices or due to having different data. The clusters that

Davis and Lopez determined were nice, but ultimately we made choices that we felt were more

appropriate in forming our QBR distributions as well as in arriving at our cluster solution.

In deciding between the two cluster solutions resulting from the hierarchical methods applied

above, our preference was the five cluster solution from Ward’s method because we do not

feel the representative curve changed enough in the “Still Around” cluster to warrant Bortles

being in his own cluster.
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