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Abstract

A simulation study is used to explore the performance of two sampling methods;

poststratifcation and simple random sampling. In this paper, estimates from post-

stratifcation and SRS at three sampling fractions (5%, 10% and 15%) and at di�erent

con�dence levels (90%, 95% and 99%) are compared. Coverage rates with associated

95% con�dence intervals are compared for the two sampling methods. Mean con�dence

interval widths for both methods are also compared for the three sampling fractions

and at di�erent con�dence levels (90%, 95% and 99%). Data were sampled from a

hypothetical study (Borkowski 2017). Variables collected on each quadrat are severity

type of Baddgrass plant densities, the number of Gudgrass plants, and nitrogen level.

The response of interest is a count of the number of Gudgrass plants that are present

per quadrat and researchers want to estimate the mean number of Gudgrass plants per

quadrat in the study area. This study contains an exploratory analysis, with the goal

of explaining the bene�ts of poststrati�cation rather than estimating using a simple

random sampling design.
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1 Introduction

Statistical inference is the process of making conclusions about some characteristics of in-

terest for a population based on data collected. Any researcher's sampling goal is to collect

a sample that is representative of a study population. The sample mean is typically used

as a point estimate for the population mean. A popular sampling design is Simple Random

Sampling (SRS). Strati�cation is also a widely-used technique in sampling which when prop-

erly applied, serves dual purposes of providing representative sub-groups of the population

and also maximizing gains in precision. Occasionally, researchers are faced with sampling

problems where they would like to stratify the population of sampling units on a key variable

but cannot assign sampling units to strata until after data has been collected. This paper

seeks to help researchers about a useful remedy to this problem and some of its bene�ts.

In this study, poststrati�cation of a sampling design will be presented. I seek to compare

coverage rates and mean interval widths of two sampling designs: Simple random sampling

and poststrati�cation from a known population.

1.1 Notation

L =number of strata

Nh = number of population units in stratum h. h= 1,2,3,...L

N =
∑L

h=1Nh= the number of units in the population

nh = the number of sampled units in stratum h, h= 1,2,....L.

n=
∑L

h=1 nh= the total number of units sampled

ˆ̄yh = the sample mean for stratum h

s2h= sample variance for stratum h
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2 Simple Random Sampling

Simple random sampling (SRS) without replacement of size n is the probability sampling

design for which a �xed number of n sampling units are selected from a population without

replacement such that every possible sample of n units has equal probability of being selected.

There are
(
N
n

)
possible SRS of size n selected from a population. For any simple random

sample S of size n from population size N we have P (S) = 1

(N
n)
. Simple random sampling

without replacement is a sampling procedure in which a sampling unit is randomly selected

from the population, its response recorded and is not returned to the population. This

process of randomly selecting units without replacement after each stage is repeated n times.

Thus a sampling unit cannot be sampled multiple times.

2.1 Estimation of ȳU

The SRS estimator for the population mean ȳU is the sample mean ˆ̄yU :

ˆ̄yU = ȳ =
1

n

n∑
i=1

yi (1)

which has variance

V (ˆ̄yU) = (
N − n

N
)
S2

n
(2)

where S2 is the population variance. The estimated variance is

V̂ (ˆ̄yU) = (
N − n

N
)
s2

n
(3)

where s2 is the sample variance.

For larger samples, an approximate 100(1 − α)% con�dence interval for ȳU is

ȳ ± z∗
√

(
N − n

N
)
s2

n
(4)
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where z∗ is the upper α/2 critical value from the standard normal distribution.

For smaller samples, an approximate 100(1 − α)% con�dence interval for ȳU is

ȳ ± t∗
√

(
N − n

N
)
s2

n
(5)

where t∗ is the upper α/2 critical value from the t(n− 1) distribution.

3 Poststrati�cation

In strati�ed sampling the researcher has knowledge of the strata sizes as well as availability

of a frame for drawing a sample in each stratum. What can we do when knowledge of a

frame for drawing a sample in each stratum is not available? Practically, it is not possible to

know in advance to which stratum a sampling unit belongs until contacted or investigated in

the course of the survey itself. Whether we randomly sampled with or without replacement,

it is always possible to classify the selected sample to the strata after selection.

Occasionally, it happens that stratum sample sizes are not known until after data collec-

tion. Poststrati�cation can be very e�cient because after sampling the strati�cation factors

can be chosen in di�erent ways for di�erent sets of variables in order to maximize gains in

precision.

In this study, a simulation-based test to show that poststrati�cation can be as precise as

proportional allocation when sampling weight Wh = Nh/N is known and nh ≥ 20. Another

simulation based test compared coverage rates and con�dence interval widths between simple

random sampling and the poststrati�cation methods.
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3.1 Variance and con�dence interval estimation with a poststrati-

�cation sampling design

The estimator for the population mean ȳU is the weighted mean ˆ̄yUstr for poststratifcation

is:

ˆ̄yUstr =
L∑

h=1

(Nh

N

)
ˆ̄yh (6)

In poststrati�cation, the nh are random variables with E(nh) =nWh, where stratum h=1,...,H.

If nh is �xed, then

V̂ (ȳst) =
L∑

h=1

W 2
h

s2h
nh

− 1

N

L∑
h=1

Whs
2
h (7)

Wh =
Nh

N

where stratum h =1,...,L

Note Wh = Nh/N represents the population proportion in stratum h. Thus, the researcher

does not need to know Nh and N but only the relative proportion of the population for each

stratum. If needed Wh can be estimated by Ŵh = nh

n

The average value of V̂ (ˆ̄yUstr) in repeated samples of size n must now be calculated. Care

must be taken since at least one stratum sample size nh could be zero. If this happens, two

or more strata would have to be combined before calculating the estimate, and a less precise

estimate would be produced. With an increasing n, the probability of nh being zero becomes

small so that the contribution to the variance from the source is negligible. If the case in

which nh is zero is ignored, Stephan(1945) provides us with a good approximation of E( 1
nh

)

E(
1

nh

) ≈ 1

nWh

+
1 −Wh

n2W 2
h

(8)

and the estimated variance is
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V̂p(ȳst) = (
1

n
− 1

N
)

L∑
h=1

Whs
2
h +

1

n2

L∑
h=1

(1 −Wh)s2h (9)

where the subscript p refers to poststratifcation. The �rst term in V̂p(ˆ̄yUstr) in (9) is the

variance one would get from a strati�ed weighted mean under proportional allocation. The

second term is always nonnegative and represents the contribution to the variance from

post - rather than pre-strati�cation. Note that the divisor of the second term is n2 and

consequently that term is usually quite small. In summary, the Stephan(1945) approximation

only works well when sample size is large and nh values are relatively large as well. A practical

consequence of this is that we should not poststratify too �nely.

Notes of caution:

1. If Nh

N
is not known or cannot be accurately estimated, then poststrati�cation can cause

the estimator to be very imprecise.

If all of the stratum sample sizes nh are su�ciently large (Thompson(2012) suggests

nh ≥ 30), an approximate 100(1 − α)% con�dence interval for ȳU is

ˆ̄yUstr ± z∗
√
V̂p(ˆ̄yUstr) (10)

where ˆ̄yUstr is the poststrati�cation estimator of the population mean and z∗ is the upper

α/2 critical value from the standard normal distribution.

For smaller samples, an approximate 100(1 − α)% con�dence interval for ȳU is

ˆ̄yUstr ± t∗
√
V̂p(ˆ̄yUst) (11)

where t∗ is the upper α/2 critical value from the t(d) distribution. In this case, d is Satherth-

waite's(1946) approximate degrees of freedom where

d =
(V̂p(ˆ̄tst))

2∑L
h=1(ahs

2
h)2/(nh − 1)

(12)
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and ah = Nh(Nh−nh)
nh

If the stratum sample sizes nh are all equal and the stratum sizes Nh are all equal, then

the degrees of freedom reduces to d = n− L where n =
∑
nh is the total sample size.

4 An Example

4.1 Background of the study

The following is a hypothetical study (Borkowski 2017). A region in central Montana has

been infested with Baddgrass, a non-native weed species. A mitigation process to remove

the Baddgrass and then revegetate the land was applied to a study area. The research

process is to �rst expose a study region to a herbicide (which we will refer to as Bio-B-

Gone) to kill all Baddgrass. Unfortunately, Bio-B-Gone will kill any plant. However, once

all plant life is killed in the study area, a native plant, Gudgrass, will be planted with the

goal of revegetating the area. A land reclamation scientist wants to summarize the amount

of vegetation present two years after application of the Bio-B-Gone and subsequent planting

of the Gudgrass. If the mitigation process proves to be successful, then the goal would be

to expand its use to larger portions of the central Montana region infested with Baddgrass.

The study area is a 400m by 400m region that is divided into 1600 10m by 10m quadrats.

The 1600 quadrats are arranged in a rectangular grid of 40 rows and 4from0 columns. Rows

1 to 40 go north to south, and columns 1 to 40 go from west to east.

Just prior to the application of Bio-B-Gone, an aerial survey was performed of the study

area. Based on the aerial photograms, a map was made that classi�ed locations into one

of four severity types. Severity types 1, 2, 3, and 4, correspond to low, moderate, high,

and very high Baadgrass plant densities. It is suspected that the potential for revegetation

may di�er across severity types. It is also suspected that the amount of nitrogen in the

soil when planting the Gudgrass could a�ect the revegetation e�orts. No prior soil nitrogen

levels are available, but will be collected from the quadrats sampled based on the sampling
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design. For each sampled quadrat from a SRS, the data collected are as follows: severity

type, nitrogen level, and the number of Gudgrass plants that were observed after two years

since application of Bio-B-Gone and replanting with Gudgrass. The nitrogen levels range

from 0 to 28.3 mg/kg.

4.2 The response of interest

One measure of vegetation that is easy to collect is a count of the number of Gudgrass plants

that are present per quadrat.

4.3 Parameter to be estimated

The parameter of interest for the researcher is the mean number of Gudgrass plants per

quadrat in the study area.

4.4 Exploratory Data Analysis

Figure 1: Beanplots of number plants strati�ed by Severity types
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Table 1: Summary statistics after stratifying by Severity types

Severity Min Q1 Median Q3 Max Mean sd N

Severity 1 1 22 48 78 161 52.78 35.52 766

Severity 2 0 23 46 74 147 50.52 33.09 457

Severity 3 4 44 62 81 148 63.866 29.55 321

Severity 4 65 80 90.5 101 124 90.69 13.75 56

Table 1 provides the summary statistics for the number of plants per quadrat when quadrats

are strati�ed by severity levels. Severity types 1, 2 and 3 shows large spread of number of

plants for those quadrats. The standard deviation column shows large values meaning the

strati�ed estimator using severity as the strati�cation variable will have a large variance.

Figure 1 shows beanplots for severity types that con�rm these �gures in Table 1.

Figure 2: Beanplots of number plants strati�ed by nitrogen levels

Table 2: Summary statistics after stratifying by nitrogen levels
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Strata Min Q1 Median Q3 Max Mean sd N

Stratum 1 0 8 15 21 30 14.578 7.51 401

Stratum 2 26 34 41 47 57 40.594 7.68 404

Stratum 3 52 60 67 73 82 66.43 7.56 396

Stratum 4 78 86 97 112.5 161 101.64 18.64 399

Table 2 provides the summary statistics when quadrats are strati�ed by nitrogen levels.

Strata 1, 2, 3 and 4 have much smaller standard deviations for the number of plants for

those quadrats compared to within severity type variation. Figure 2 shows beanplots for

nitrogen levels across nitrogen level strata con�rms these �gures in Table 2.

Table 3: Summary statistics of nitrogen levels

Min Q1 Median Q3 Max Mean sd N

0 11.2 16 19.4 28.3 15.31 5.70 1600

Table 4: Summary statistics of number of Gudgrass plants observed

Min Q1 Median Q3 Max Mean sd N

0 27 53 79 161 55.68 34.14 1600

Tables 3 and 4 provide summary statistics of nitrogen levels and the number of Gudgrass
plants observed, respectively.

4.5 Why poststratify with Nitrogen levels?

The basic motivating principle behind using strati�cation is to produce an estimator with

small variance by partitioning the population so that the units within each stratum are as

similar as possible. This is known as the strati�cation principle. In this study, researchers

de�ned strata for a geographical region into groups of units that will be similar with respect

to nitrogen level categories because it is suspected that the number of plants may vary

greatly across strata while they will tend to be similar within each stratum.The researchers

however, do not know which units belong to each stratum prior to data collection. Nitrogen

levels helped stratify the number of plants for each quadrat in four strata because they were
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strati�ed based on prior estimates of quartiles. The bean plot in Figure 2 clearly shows

there is smaller variability within strata when strati�cation is done by nitrogen levels and

larger variability when strati�cation is done by severity type. This con�rms that we expect

to obtain more precise estimates when plant counts are strati�ed by nitrogen level.

4.6 Method

Using this study, we will compare the estimates, coverage probabilities and precision among

the two sampling designs: Simple random sampling and poststrati�cation.

5 Results and Discussion

The coverage rate was computed from 10,000 samples and summarized as the percentage

of 10,000 con�dence intervals that contained the population mean. For each interval, the

di�erence between the upper bound and the lower bound was recorded. The mean width

was calculated as the average of the 10000 con�dence interval widths.

5.1 Results: Coverage Rate

Table 5: Coverage rates for 90% con�dence level(95% CI for coverage rates)

Method 80(5% of N) 160(10% of N) 240(15% of N)

Poststrati�cation 89.84%(89.24%,90.40%) 89.64%(89.04%,90.38%) 89.79% (89.19%,90.38%)

SRS 89.85%(89.26%,90.44%) 90.04% (89.45%,90.63%) 90.13%(89.50%,90.71%)

Table 6: Coverage rates for 95% con�dence level(95% CI for coverage rates)

Method 80(5% of N) 160(10% of N) 240(15% of N)

Poststrati�cation 93.73%(93.25%,94.21%) 94.66%(94.22%,95.10%) 94.67%(94.23%,95.11%)

SRS 95.23%(94.81%,95.65%) 95.06% (94.64%,95.48%) 95.33% (94.92%,95.74%)
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Table 7: Coverage rates for 99% con�dence level (95% CI for coverage rates)

Method 80(5% of N) 160(10% of N) 240(15% of N)

Poststrati�cation 98.51%(98.27%,98.75%) 98.87% (98.66%,99.08%) 98.85%(98.64%,99.06%)

SRS 98.89%(98.68%,99.09%) 99.13%(98.95%,99.31%) 99.08%(98.89%,99.27%)

Tables 5, 6 and 7 above show the coverage rates along with the associated con�dence intervals

for poststrati�cation and SRS methods. Approximate 90%, 95% and 99% nominal levels of

con�dence for all sample sizes were attained. It is observed that all coverage rates are within

1% of the nominal con�dence level for all three sample sizes (80, 160 and 240). For all three

sample sizes, the coverage rates were close to the three nominal levels of con�dence for both

poststrati�cation and SRS methods.

(a) Intervals when n=80 (b) Intervals when n=160 (c) Intervals when n=240

Figure 3: SRS Intervals for a nominal 90% con�dence level
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(a) Intervals when n=80 (b) Intervals when n=160 (c) Intervals when n=240

Figure 4: Poststrati�cation Intervals for a nominal 90% con�dence level

(a) Intervals when n=80 (b) Intervals when n=160 (c) Intervals when n=240

Figure 5: Poststrati�cation intervals for a nominal 95% con�dence level

Figures 3 to 8 show a pictorial view of 10,000 simulated intervals and which intervals contain

the true mean(µ) or otherwise. Looking at the 10,000 simulated intervals for each sampling

design the following observation were made:

• Poststrati�cation intervals are narrower intervals than SRS intervals.

• Predictably, larger con�dence levels had wider con�dence intervals.

• Finally, as the sample size increased, the interval became narrower for all three con�-

(a) Intervals when n=80 (b) Intervals when n=160 (c) Intervals when n=240

Figure 6: Poststrati�cation intervals for a nominal 95% con�dence level
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(a) Intervals when n=80 (b) Intervals when n=160 (c) Intervals when n=240

Figure 7: SRS intervals for a nominal 99% con�dence level

(a) Intervals when n=80 (b) Intervals when n=160 (c) Intervals when n=240

Figure 8: Poststrati�cation intervals for a nominal 99% con�dence level

dence levels.

5.2 Results: Mean Interval Width

Table 8: Mean Interval Width/SE for 90%CI

Method 80(5% of N) 160(10% of N) 240(15% of N)

Poststrati�cation 4.1863/0.00468 2.8489/0.00212 2.2509/0.00131

SRS 12.3556/0.0086 8.4627/0.00397 6.70147/0.00251

Table 9: Mean Interval Width/SE for 95%CI

Method 80(5% of N) 160(10% of N) 240(15% of N)

Poststrati�cation 5.0035/0.00557 3.4010/0.0025 2.6857/0.001565

SRS 14.7853/0.01 10.0996/0.0046 7.9917/0.00293

Table 10: Mean Interval Width/SE for 99%CI

Method 80(5% of N) 160(10% of N) 240(15% of N)

Poststrati�cation 6.6555/0.00737 4.4895/0.00336 3.5388/0.0020699

SRS 19.5949/0.0136 13.3315/0.006217 10.5424/0.0039
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Based on Tables 8, 9 and 10, the following observations were made:

• At each con�dence level, the mean interval width for the SRS is about three times the

mean width of poststrati�cation for the three sample sizes. The SE for poststrati�ca-

tion is also about half the the standard error for the SRS.

• As sample size increases, the standard error of the mean width decreases at each

con�dence level for both methods.

• Mean width increases as the nominal con�dence level also increases for all three sample

sizes.

(a) Intervals when n=80 (b) Intervals when n=160 (c) Intervals when n=240

Figure 9: Histograms of Widths for a nominal 90% con�dence level for Poststrati�cation and
SRS

(a) Intervals when n=80 (b) Intervals when n=160 (c) Intervals when n=240

Figure 10: Histograms of Widths for a nominal 95% con�dence level for Poststrati�cation
and SRS
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(a) Intervals when n=80 (b) Intervals when n=160 (c) Intervals when n=240

Figure 11: Histograms of Widths for a nominal 99% con�dence level for Poststrati�cation
and SRS

Based on Figures 9, 10 and 11, the following observations were made:

• The histogram of widths for SRS is centered at a larger value than where the center of
the poststrati�cation histogram is located.

• The histogram of the SRS has a wider spread than that of the poststrati�cation his-
togram of widths.

• The space between the two histograms of width of the two methods indicates how
di�erent the intervals are for both methods.

• For both methods, the mean width decreases as the sampling fraction (sample size)
was increased.

5.3 Discussion

When constructing con�dence intervals, the goal is to match the desired level of con�dence

at least approximately. The results showed the poststratifcation design generates narrower

and more precise con�dence intervals than the SRS sampling design that approximately

match the nominal con�dence level. On the other hand, it was also observed that SRS may

generate con�dence intervals that are wider but still attain the desired level of con�dence.

6 Improvement and Future work

Future work could look at including ratio or regression estimation to the poststrati�cation

process in the estimation of the population mean if more variables are collected on quadrats.
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