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Abstract

Do students with a low number of prior math courses have a higher dropout rate in
Introductory statistics than students with a high number of prior math courses? How
does a student’s ACT, SAT or MPLEX score affect their dropout rate? To answer
these questions, one needs to perform survival analysis. Survival, or time-to-event
analysis, is one of most significant advancements of mathematical statistics in recent
years with broad applications in the fields of mechanical research, engineering and
especially biomedical research. In this paper, review the properties and modeling
methods for survival data, then fit a Cox Proportional Hazards Model for the data
on time until dropout for students in the introductory statistics course (STAT 216).
The data showed that the number of prior math courses taken and/or MPLEX score
could have an effect on the time to drop out for students enrolled in the STAT 216
course.

Keywords: Survival analysis, Cox proportional hazards model, Kaplan-Meier
estimate.
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1 Introduction

As instructors or tutors, one goal is to see students succeed in the course, and thus see a considerably
low dropout rate. Unfortunately, a few studies have been undertaken to determine factors that affects
student’s survival in course. Most studies focus on factors that affect college dropout, as opposed
to course specific dropouts. For example, a study funded by the Bill and Melinda Gates foundation
stated that, “More Americans are going to college than ever before, but students face unprecedented
challenges. Over 44 million Americans collectively hold more than $1.4 trillion in student loan debt
and only 54.8 percent of students graduate in six years.” (Bill & Melinda Gates Foundation, 2017).
Another study found that over 40% of full time four-year college students fail to earn a bachelor’s degree
within six years, and many never complete their education (E.D. Velez, 2014). More interestingly,
Cheryl Miller in her thesis, “Dropped out or Pushed Out: A Case Study on Why Students Drop Out”,
proposed that students just do not decide one day that they are tired of school and stop attending, and
that instead, there is a series of events that occur long before the student makes the announcement
that he/she is planning to dropout (Miller C., 2006). Even though this study did not investigate a
potential factor of a student’s performance in courses taken during his or her time at college, one might
expect that with all else being equal, dropout rates will be lower for students with strong academic
performance compared to students with a poor academic standing. This could be due to the fact that
students with a good standing would be more interested in completing their degrees.

This paper, although limited by its scope of inference, attempts to apply the technique of survival
analysis to estimate, interpret and assess the relationship of several explanatory variables with a
student’s survival in the Introduction to Statistics course (STAT 216) at Montana State University,
Bozeman (MSU). Survival in this context is defined as a student’s ability to complete the STAT 216
course within a particular semester he/she has enrolled. Most disciplines require students to take at
least one statistics course before they can graduate. This implies that there is a potential for students
who are unable to complete this course to be frustrated, and in the long run, may dropout of college.
In this paper, we introduce the basics of survival analysis, how to display survival data, followed by
the necessary foundations for Cox regression models. The paper concludes with a detailed summary,
analysis and discussion of results from the study.

1.1 Objectives

The objectives of this study are to:

(i) fit an appropriate Cox proportional hazards model to data obtained for students enrolled in
STAT 216 for the 2014/2015 to 2016/2017 academic years,

(ii) determine which explanatory variables affect the dropout rate for STAT 216 students in a given
semester,

(iii) predict time to dropout for STAT 216 students per semester, and

(iv) compare the survival probabilities of STAT 216 students with respect to the different explanatory
variables.

The factors considered in this model include the prior number of Math courses taken, ACT, MPLEX,
SAT scores, and the age of a student.
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2 Methodology

2.1 Introduction to Survival Analysis

Survival analysis examines and models the time it takes for events to occur. The most typical of such
event is death, from which the name ‘survival analysis’ and much of its terminology derives, but the
ambit of application of survival analysis is much broader (Fox J., 2008). Other events include response
to treatment, device failure, regaining mobility and, for this study, dropout.

The object of survival analysis (also know as failure time or time-to-event analysis) are data in the
form of times from a well-defined time origin to an end point, where the end point could be the
occurrence of some particular event or a particular time point (Ni J., 2009). In most studies, the time
origin will correspond to the recruitment of the observational or experimental unit, such as a clinical
trial to compare two or more treatments. The focus of this paper is on the application of survival
analysis to data on the time until dropout of STAT 216 students per semester.

One feature of survival data that renders standard statistical methods inappropriate is that the dis-
tribution of survival data tend to be positively skewed, that is, most data will be bunched up toward
the left and with a ‘tail’ stretching toward the right. Even though this characteristic could easily be
resolved by first transforming the data to give a more symmetric distribution, a more satisfactory
approach would be to select an alternative distributional model for the original data or use some other
non-parametric approach. However, the distinguishing feature of survival data is that at the end of the
study period, the event of interest may not have occurred for all units in the study. This phenomenon
is defined as censoring.

2.2 Censoring

The survival time of an individual is said to be censored when the end-point of interest and/or starting
time has not been observed for that individual. Formally, an observation is right censored at time C
if the lifetime (T ) is only known to be greater than C. Similarly, an observation is left censored if the
lifetime is only known to be less than C (Lawless 1982, 2003). Another type of censoring is interval
censoring, which occurs when individuals are known to have experienced an event within an interval of
time. For example, say the time to dropout is recorded in days, however we only observe the number
of students still enrolled in STAT 216 at the end of the week (Friday). If a students is observed to be
enrolled in the course on Monday, but is found to have dropped out when the class roll was checked
on Friday, the actual day that student dropped out is known to be within Monday and Friday. The
observed time to dropout is said to be interval-censored. Examples of the various types of censoring
are illustrated in Figure 1 below for a selection of ten STAT 216 students from our data set.

2.3 Definitions of Important Distribution Functions Used in Survival Analysis

2.3.1 Survivor Function

Let the random variable T be the survival time in days to dropout of STAT 216 in a semester and t be
regarded as an observed value of T . Now suppose that T has a probability distribution with underlying
probability density function, f(t). The distribution function (cumulative distribution function) of T is
then given by:

F (t) = P (T ≤ t) =

∫ t

0
f(u)du, (1)
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Figure 1: Study time for ten students in a semester. Left Censored: Student 2; Right censored: Students
3, 7 and 10; Interval censored: Students 4 and 8

which is defined as the probability that a students survival time is less than some value t. The
survivor function, S(t), is defined as the probability that the survival time is greater than t, and so
from Equation (1),

S(t) = P (T > t) = 1− F (t) (2)

2.3.2 Hazard Function

The hazard function is used to express the risk or hazard of an event at some time t. This function
is obtained from the probability that a student drops out at time t, conditional on he or she having
survived in the course until that time. Formally, we define the hazard function h(t) as:

h(t) = lim
δt→0

{
P (t < T ≤ t+ δt|T > t)

δt

}
(3)

The function h(t) is also referred to as the hazard rate, the instantaneous death rate, the intensity rate
or the force of mortality.

The definition of the hazard function in Equation (3) leads to some useful relationships between the
survivor and hazard functions. Based on the definition of conditional probabilities, we have:

P (t ≤ T < t+ δt|T > t) =
P (t < T ≤ t+ δt)

P (T > t)

=
F (t+ δt)− F (t)

S(t)
.

Then,

h(t) = lim
δt→0

{
F (t+ δt)− F (t)

δt

}
1

S(t)
.

Now,

lim
δt→0

{
F (t+ δt)− F (t)

δt

}
is the definition of the derivative of F (t) with respect to t, which is f(t), and so,

h(t) =
f(t)

S(t)
. (4)

Altogether, Equations (1), (2) and (4) show that from any one of the three functions, f(t), S(t) and
h(t), the other two can be derived.
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2.3.3 Cumulative Hazard Function

From Equation (4), it follows that

h(t) = − d

dt
logS(t), (5)

and so
S(t) = exp{−H(t)}, (6)

where

H(t) =

∫ t

0
h(u)du. (7)

The function H(t) features widely in survival analysis, and is called the integrated or cumulative hazard
function. From Equation (6), the cumulative hazard function can also be obtained from the survivor
function, since

H(t) = − logS(t). (8)

The cumulative hazard function, H(t), is the cumulative risk of a student dropout occurring by time
t. That is, H(t) summarizes the risk of dropout up to time t, given that no dropout has not occurred
before t. The survivor function, hazard function and cumulative hazard function are all estimated
from the observed survival times when analyzing survival data.

2.4 Estimating the Survivor Function

For this study, we focus on non-parametric or distribution-free methods of estimating the survival
and hazard functions which are conveniently used to summarize survival data. These methods do
not require specific assumptions to be made about the underlying distribution of the survival times.
Once we are able to estimate the survivor function, we can proceed to estimate the median and other
percentiles of the distribution of survival times. These estimated survival functions can serve as an
informal tool for comparing survival experience of individuals in two groups. Not surprisingly, there
are formal non-parametric procedures for comparing two or more groups of survival times which will
also be discussed.

Suppose we obtain data on a single sample of survival times, where none of the observations are
censored Then the survival function in Equation (2) can be estimated by the empirical survivor
function given by:

Ŝ(t) =
Number of individuals with survival times ≥ t

Number of individuals in the data set
(9)

Equivalently, Ŝ(t) = 1−F̂ (t), where F̂ (t) is the empirical distribution function, that is, the ratio of the
total number of students still enrolled in STAT 216 at time t to the total number of students enrolled
in STAT 216 at the beginning of the semester. Notice that the empirical survivor function is equal to
unity for values of t before the first dropout, and zero at the final dropout time. We also assume that
Ŝ(t) is constant between two adjacent dropout times, and so a plot of Ŝ(t) against t is a decreasing
step function as shown in Figure 2.

2.4.1 Kaplan-Meier Estimate of the Survivor Function

The method of estimating the survivor function using the empirical distribution function is problematic
when there are censored observations. In 1958, E. L. Kaplan and P. Meier came up with one of the
most frequently used non-parametric approaches used to estimate the survivor function, the Kaplan-
Meier method. The Kaplan-Meier or Product-limit estimator is defined as the probability of surviving
a given length of time while considering time in many small intervals (Goel, M.K., et al., 2010). The
three assumptions used are:
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Figure 2: Estimated survivor function for a sample of 43 students in a STAT 216 course.

1. At any time, students who are censored have the same survival prospects as those who continue
to be studied.

2. The survival probabilities are the same for students enrolled early and later in the semester.

3. The dropout occurs at the time (day) specified.

The Kaplan-Meier estimator involves computing probabilities of occurrence of event at a certain
point of time. The successive probabilities are then multiplied by any earlier estimated computed
probabilities to get the final estimate. Formally, the Kaplan-Meier estimate of the survivor function
is given by:

Ŝ(t) =

k∏
j=1

(
nj − dj
nj

)
, (10)

for t(k) ≤ t < t(k+1), k = 1, 2, , ..., r. We define Ŝ(t) = 1 for t < t(1), and t(r+1) is taken to be ∞,
where

• t(k) is the time of kth dropout, for t(1) < t(2) < ... < t(r),

• t1, ..., tn are the observed survival times for n students,

• r represents the number of dropout times observed, such that r ≤ n,

• nj represents the number of students still enrolled just before time t(k), including those who are
about to dropout at this time, and

• dj represents the number of students who dropout at time t(k).

Other non-parametric methods used in estimating survivor function include the life-table and Nelson-
Aalen estimates of the survivor function.

2.4.2 Standard Error of the Kaplan-Meier Estimate

Using the delta method, Greenwood’s formula gives an asymptotic standard error for the Kaplan-Meier
(KM) estimator (Rodriguez G., 2005). The variance for the KM estimate of the survivor function can
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be shown to be:

v̂ar{Ŝ(t)} ≈ [Ŝ(t)]2
k∑
j=1

dj
nj(nj − dj)

, for t(k) ≤ t < t(k+1). (11)

Finally, the standard error of the Kaplan-Meier estimate of the survivor function, defined to be the
square root of the estimated variance of the estimate, is given by

se{Ŝ(t)} ≈ Ŝ(t)


k∑
j=1

dj
nj(nj − dj)


1
2

, for t(k) ≤ t < t(k+1). (12)

This result is known as Greenwood’s formula.

Thus, a pointwise 100(1−α)% confidence interval for S(t), for a given value of t, is the interval given
by:

Ŝ(t)± zα/2se{Ŝ(t)}, (13)

where zα/2 is the upper α/2 critical value for the standard normal distribution. These intervals can
be superimposed on a graph of the estimated survivor function.

2.5 Estimating the Median and Percentiles of Survival Times

Using the estimated survivor function, the estimated pth percentile of the distribution of survival times
is the observed survival time, t̂(p), for which

Ŝ{t̂(p)} < 1− (p/100), (14)

with an associated standard error given by:

se{t̂(p)} =
1

f̂{t̂(p)}
se[Ŝ{t̂(p)}], (15)

where f̂{t̂(p)} is the KM estimate of the probability density function of the survival times at t(p).
Once the standard error of the estimated pth percentile has been found, a 100(1 − α)% confidence
interval for t(p) has limits of:

t̂(p)± zα/2se{t̂(p)}, (16)

where zα/2 is the upper α/2 critical value for the standard normal distribution. Note that these
confidence intervals are only approximations, and thus, do not have an exact 1−α coverage probability.
Alternative methods with better coverage probabilities have been developed.

2.6 Comparison of Two Groups of Survival Data

A visual assessment of the survival times obtained from two groups of individuals can be made by
plotting the corresponding estimates of the two survivor functions on the same axes. Any differences
observed between the two survival curves could be due to two possible explanations. The first is
random chance; that is, there is no real difference between the distribution survival times in each
group, and that the difference observed is merely the result of random variation. The second is that
there is a real difference between the distribution of survival times for the two groups of individuals,
so that our data reflects this difference. We can conduct a hypothesis test to help distinguish between
the two possible explanations. In other words, an hypothesis test enables us to assess the extent to
which an observed set of data are consistent with a particular hypothesis.
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2.6.1 Hypothesis Testing

The three basic steps taken to conduct an hypothesis test are given as:

(a) Assume that the null hypothesis is true. The null or working hypothesis is usually viewed as the
data-generating process, and represents the hypothesis that there is no difference between two
survival distributions.

(b) Formulate a test statistic. The test statistic is use to measure the extent to which the observed
data departs from the null hypothesis. Generally, large test statistics suggest evidence against the
null hypothesis.

(c) Calculate the probability value (p-value). This value represents the probability of obtaining a test
statistic value as extreme as or more extreme than the observed value, when the null hypothesis
is true. It is used to summarize the strength of evidence in the sample data against the null
hypothesis. Generally, when the p-value is large, we conclude that the observed data is likely
to be obtained when the null hypothesis is true, and that there is no evidence against the null
hypothesis. On the contrary, for small p-values, we can conclude there is strong evidence against
the null hypothesis.

2.7 The Log-rank Test

The log-rank test is a non-parametric procedure that can be used to quantify the extent of between-
group differences for survival data. The log-rank test statistic can be obtained under the null hypoth-
esis as:

WL =
U2
L

VL
∼ χ2

1, (17)

where:

e1j =
n1jdj
nj

; UL =

r∑
j=1

(d1j − e1j); and VL =

r∑
j=1

n1jn2jdj(nj − dj)
n2j (nj − 1)

.

The larger the value of WL, the greater the evidence against the null hypothesis. Given that WL is
approximately chi-squared with one degree of freedom if the null hypothesis is true, the p-value can
be obtained from the distribution function of a chi-squared random variable.

2.8 The Cox Proportional Hazards Model

We may expect survival times to depend on the outcome of several explanatory variables. Accordingly,
the values of these variables would be recorded at the outset of the study. In 1972, Sir David Cox
developed what has come to be known as the Cox Regression Model, which both unifies and extends
the non-parametric procedures earlier discussed.

Unlike many linear models one may have encountered in regression analysis and in the analysis of
data from designed experiments, here, the hazard function is modeled directly. The objective of
the modeling process is to determine which combination of potential explanatory variables affect the
form of the hazard function. Another reason is to obtain an estimate of the hazard function itself
for an individual, which would in turn aid in estimating the survivor function from the relationships
described in Equation (5). However, principles and procedures used in linear modeling carry over to
the modeling of survival data.

In the model proposed by D. Cox is based on the assumption that hazards are proportional. This
means that the hazard functions for two individuals are proportional to each other. In other words, the
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hazard of dropout at any given time for a student in one group (for e.g. low ACT score) is proportional
to the hazard at that time for a similar student in another group (for e.g. high ACT scores).

2.8.1 The General Proportional Hazards Model

The Cox proportional hazards model is given as:

hi(t) = exp(β′xi)h0(t), (18)

where;

• xi = (x1i, ..., xpi)
′ is a vector representing the set of values of the explanatory variables for the

ith individual,

• β = (β1, ..., βp) represents the vector of unknown regression coefficients, and

• h0(t) is the hazard function for an individual for whom x = 0. The function is also known as
the baseline hazard function.

The Cox model proposed in Equation (18) does not make any assumptions about the actual form of
h0(t), hence, it is known as a semi-parametric model. We are only interested in obtaining estimates
for β. These parameters can be estimated using the method of maximum likelihood. This approach
allows estimating β by using the ranks of the dropout and uncensored times. Therefore, if t(1), ..., t(k)
are k ordered dropout times and R(t(j)), the risk set, is the set of students which have survived until

t(j), immediately prior to the jth survival time, then the relevant likelihood function for the Cox model
is:

L(β) =

r∏
j=1

exp(β′x(j))∑
l∈R(t(j))

exp(β′x(j))
(19)

The likelihood function in Equation (19) is however not a true likelihood, since it does not make direct
use of the actual censored and uncensored survival times, hence, it is known as a partial likelihood
function. The likelihood function only depends on the ranking of the dropout times, since this the
determines the risk set at each dropout time. Consequently, inferences about the effect of explanatory
variables on the hazard function depend only on the rank order of the survival times.

Now, suppose that the data consist of n observed survival times, denoted by t1, .., tn, and that δi is
an event indicator, which is zero if the ith survival time ti, i = 1, ..., n, is right censored, and unity
otherwise. Then we express the partial likelihood function of Equation (19) as:

n∏
i=1

{
exp(β′xi)∑

l∈R(ti)
exp(β′xl)

}δi
, (20)

where R(ti) is the risk set at time ti. We then obtain the partial log-likelihood function from Equation
(20) as:

logL(β) =

n∑
i=1

δi

β′xi − log
∑

l∈R(t(j))

exp(β′xl)

 . (21)

Given that there are no closed-form solutions to the partial log-likelihood function, the Newton-
Raphson procedure is generally used to obtain maximum likelihood estimates of the β-parameters.

Once we are able to obtain these estimates, we can also estimate standard errors and construct an
approximate (1− α)100% confidence interval for β, and estimate the hazard ratio, exp(β).
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3 Analysis and Results

3.1 Data Description

We apply the methods discussed to a retrospective cohort study for STAT 216 students enrolled
at Montana State University, Bozeman, between the 2014/2015 to the 2016/2017 academic years.
Secondary data was obtained from the Office of the Registrar, and combined with data from the
Department of Mathematical Sciences. In the process of merging the two datasets, some information
was unfortunately lost, and we thus proceed with the combined dataset as a convenience sample of
STAT 216 students enrolled in a particular semester. We only focus on the Fall and Spring semesters
for each academic year. The following variables are studied:

T: the number of days until a students drops or withdraws from STAT216 per semester.

X0: Status of censoring

0- student is right-censored, that is, student completed the course with a grade.

1- student dropped out.

X1: Number of prior math courses taken.

0- at most 2 math courses (Low).

1- at least 3 math courses (High).

X2: Age of student at the start of the semester.

0- less than or equal to 21 years old (Young).

1- greater than 21 years (Old).

X3: Math placement exam (MPLEX) score.

0- 0.0 ≤ MPLEX ≤ 2.5 (Low)

1- 2.5 < MPLEX ≤ 5.0 (High)

X4: ACT score.

0- 0 ≤ ACT ≤ 20 (Low)

1- 20 < ACT ≤ 30 (Moderate)

2- 30 < ACT ≤ 40 (High)

We assume that all students started the course at the beginning of each semester, and that all covariates
were recorded prior to the commencement of the semester. Table (1) and Figure (3) summarize the
number of students per semester who dropped out. A summary of the observed data for each of the
explanatory variables by status of survival (dropout or completed) are also summarized in the Tables
constructed in the Appendix.

3.1.1 Dealing with Missing ACT and SAT Scores

Note that most students only took either the ACT or SAT exam. The data set, therefore, was
incomplete for such students. Given that both standardized tests are organized by the College Board,
we were able to obtain an ACT-SAT concordance table that allows us to convert scores. With this,
we were able to obtain equivalent ACT scores for students who took the SAT (Compassprep, 2016).
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Figure 3: Status of students per semester.

No. of No. of No. of
TERM Students dropout (%) censored (%)

F2014 296 16 (5.41) 280 (94.59)
S2015 240 23 (9.58) 217 (90.42)
F2015 820 78 (9.51) 742 (90.49)
S2016 640 68 (10.63) 572 (89.37)
F2016 865 76 (8.79) 789 (91.21)
S2017 641 70 (10.92) 571 (89.08)

Total 3502 331 (9.45) 3171 (90.55)

Table 1: Data summary for STAT 216 for each
semester.

3.1.2 Exploratory Data Analysis

From Figure (3) and Table (1), we observe that the proportions of students that dropout are approx-
imately equal across all semesters (8.79%-10.92%) except for the Fall 2014 semester, where there is a
very low dropout rate (5.41%). A summary of the association between each of the explanatory vari-
ables and the dropout rates can also be seen in Tables 14 to 17 (refer to Appendix). At a glance, there
appears to be no practical difference between levels of each explanatory variable across semesters.

3.1.3 Kaplan-Meier Survival estimates

The Kaplan-Meier estimates of the survivor function for each semester are given in Figures (4) - (6).

Figure 4: Kaplan-Meier estimates of survival for the 2014/2015 Academic year.

Figure 5: Kaplan-Meier estimates of survival for the 2015/2016 Academic year.
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Figure 6: Kaplan-Meier estimates of survival for the 2016/2017 Academic year.

We observe that the KM estimates appear to be similar across all semesters. Due to the low number of
withdrawals in each semester, a majority of the survival probabilities range within 0.875 to 1. Also in
the Fall semester, students are most likely to withdraw within the 60th and 90th day, whereas students
withdraw between the 80th and 100th day in the Spring semesters. The number at risk tables below
each KM plot also displays the number of students who have still not dropped out on a particular day
within that semester.

3.1.4 Estimation of Cox Regression Parameter

(a) Fall 2014 Semester:
We first fit the proportional hazards model using each covariate only and produce a log-cumulative
hazard plot (Figure 7) to assess the assumption of proportional hazards. The lines in all four log

Figure 7: Log Cumulative Hazard Plot for each covariate in the F2014 semester

cumulative hazard plots are close to parallel, so there does not seem to be an obvious violation of
the proportional hazards assumption. This is confirmed by the Log-rank test p-values displayed
on each plot. We then proceed to fit the cox proportional hazards model for the ith student, given
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as:
ĥi(t) = exp{−0.704X1i − 0.526X2i + 0.477X3i − 0.22X41i − 0.263X42i}h0(t)

where h0(t) is the hazard rate for a student with High number of prior math courses, old age, high
MPLEX and ACT scores.

Covariate coef exp(coef) se(coef) z Pr(> |z|) lower(.95) upper(.95)

X11 -0.704 0.495 0.572 -1.23 0.22 0.16118 1.518
X21 -0.526 0.591 0.538 -0.98 0.33 0.20570 1.698
X31 0.447 1.564 0.529 0.84 0.40 0.55406 4.415
X41 -0.220 0.802 1.154 -0.19 0.85 0.08357 7.704
X42 -0.263 0.769 1.052 -0.25 0.80 0.09786 6.044

Table 2: Results of Cox-regression model estimation for F2014

We can interpret the coefficient for X1 as; for old students with high MPLEX and ACT scores, the
estimated hazard rate for students with low number of prior math courses is 50.5% lower compared
to students in the high group. However, we observe a weak evidence that survivor distributions

Test Chi-Square DF Pr>Chi-Sq

Likelihood Ratio 5.32 5 0.3786
Wald 5.13 5 0.4005
Score(logrank) 5.52 5 0.3554

Table 3: Testing Global Null Hypothesis: BETA=0 (F2014)

differ between combinations of treatments (Table 3). In other words, there is little to no evidence
that at least one covariate has an effect on the time to student dropout in Fall 2014 semester.

(b) Spring 2015 Semester:
We also fit the proportional hazards model using each covariate only and produce a log-cumulative
hazard plot (Figure 8) to assess the assumption of proportional hazards. Similar to what was
observed in F2014, the lines in all four log cumulative hazard plots are close to parallel. This is
confirmed by the Log-rank test p-values displayed on each plot. The cox proportional hazards
model for the ith student is then given as:

ĥi(t) = exp{−0.606X1i + 0.956X2i + 0.123X3i + 16.4X41i + 16.4X42i}h0(t)

where h0(t) is defined as before.

Covariate coef exp(coef) se(coef) z Pr(> |z|) lower(.95) upper(.95)

X11 -0.6055 0.5458 0.4624 -1.310 0.190 0.2205 1.351
X21 0.9556 2.600 0.5618 1.701 0.089 0.8646 7.820
X31 0.1234 1.131 0.4315 0.286 0.775 0.4856 2.635
X41 16.45 1.388× 107 4878 0.003 0.997 0.0000 ∞
X42 16.38 1.298× 107 4878 0.003 0.997 0.0000 ∞

Table 4: Results of Cox-regression model estimation for S2015

We can interpret the coefficient for X2 as; for students with a high number of prior math courses
with high MPLEX and ACT scores, the hazard rate for younger students is 160% higher compared
to older students. However, we observe a weak evidence that survivor distributions differ between
combinations of treatments (Table 5). In other words, there is little to no evidence that at least
one covariate has an effect on the time to student dropout in Spring 2015 semester.
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Test Chi-Square DF Pr>Chi-Sq

Likelihood Ratio 5.38 5 0.3709
Wald 4.25 5 0.514
Score(logrank) 4.85 5 0.4342

Table 5: Testing Global Null Hypothesis: BETA=0 (S2015)

(c) Fall 2015 Semester:
Figure 9 displays the log-cumulative hazard plot used to assess the assumption of proportional
hazards. Even though the lines in all four log cumulative hazard plots are close to parallel, the
log-rank test provides evidence that the survival distributions does not differ between levels of all
covariates, except for the number of prior math courses where there is strong evidence that the
survival distributions differs for students in the low and high groups. We then estimate the cox
proportional hazards model for the ith student as:

ĥi(t) = exp{−0.0203X1i − 0.3022X2i + 0.5748X3i + 1.40082X4i + 1.1841X42i}h0(t)

Covariate coef exp(coef) se(coef) z Pr(> |z|) lower(.95) upper(.95)

X11 -0.0203 0.9799 0.2403 -0.08 0.933 0.6119 1.569
X21 -0.3022 0.7392 0.2763 -1.09 0.274 0.4301 1.27
X31 0.5748 1.7769 0.2369 2.43 0.015 1.1168 2.827
X41 1.4008 4.0585 1.0508 1.33 0.183 0.5175 31.829
X42 1.1841 3.2677 1.0150 1.17 0.243 0.4469 23.8914

Table 6: Results of Cox-regression model estimation for F2015

We can interpret the coefficient for X41 as; for old students with high number of prior math
courses and MPLEX score, the time to dropout for students with low ACT scores is 305.85%
higher compared to students with high ACT scores.

Test Chi-Square DF Pr>Chi-Sq

Likelihood Ratio 14.71 5 0.01169
Wald 13.86 5 0.01654
Score(logrank) 15.05 5 0.01016

Table 7: Testing Global Null Hypothesis: BETA=0 (F2015)

We also observe a strong evidence that survivor distributions differ between combinations of
treatments (Table 7). In other words, there is strong evidence that at least one covariate has an
effect on the time to student dropout in Fall 2015 semester. From Table 6, we observe that the
MPLEX score has an effect on the survival probabilities for students in F2015 semester.

(d) Spring 2016 Semester:
The log-cumulative hazard plot in Figure 10 is used to assess the assumption of proportional
hazards and the log-rank test provides evidence that the survival distributions differ between levels
of number of prior math courses and MPLEX scores, but for ACT scores and age of student, there
is no evidence that the survival distributions differs for students. The estimated cox proportional
hazards model for the ith student given as:

ĥi(t) = exp{−0.804X1i − 0.228X2i + 0.562X3i − 0.431X41i − 0.625X42i}h0(t)

After adjusting for Age, MPLEX and ACT scores, we are 95% confident that the dropout rate of
the population of STAT 216 students in S2016 semester with low number of prior math courses is
between about 11.72% to 77.31% lower than the hazard rate if student has a high number of prior
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Covariate coef exp(coef) se(coef) z Pr(> |z|) lower(.95) upper(.95)

X11 -0.804 0.448 0.347 -2.32 0.020 0.2269 0.8828
X21 -0.228 0.796 0.266 -0.86 0.391 0.4729 1.3406
X31 0.562 1.754 0.258 2.18 0.029 1.0585 2.9067
X41 -0.431 0.650 0.573 -0.75 0.452 0.2112 1.9985
X42 0.625 0.535 0.535 -1.17 0.243 0.1877 1.5275

Table 8: Results of Cox-regression model estimation for S2016

Test Chi-Square DF Pr>Chi-Sq

Likelihood Ratio 16.26 5 0.006149
Wald 14.72 5 0.01163
Score(logrank) 15.6 5 0.008069

Table 9: Testing Global Null Hypothesis: BETA=0 (S2016)

math courses. We also observe a very strong evidence that survivor distributions differ between
combinations of treatments (Table 9). In other words, there is strong evidence that at least one
covariate has an effect on the time to student dropout in Fall 2014 semester. From Table 8, we
observe that the MPLEX score and the number of prior math courses taken both have an effect
on the survival probabilities for students in S2016 semester.

(e) Fall 2016 Semester:
From the log-cumulative hazard plot in Figure 11, the log-rank test provides evidence that the
survival distributions differs between levels of number of prior math courses and AGE of a student,
but for ACT and MPLEX scores, there is little to no evidence that the survival distributions differs
for students. The cox proportional hazards model for the ith student is given as:

ĥi(t) = exp{−0.620X1i − 0.408X2i + 0.169X3i + 16.8X41i + 16.9X42i}h0(t)

where h0(t) is the hazard rate for a student with High number of prior math courses, old age, high
MPLEX and ACT scores.

Covariate coef exp(coef) se(coef) z Pr(> |z|) lower(.95) upper(.95)

X11 -0.620 0.538 0.255 -2.43 0.015 0.3264 0.8863
X21 -0.408 0.665 0.251 -1.62 0.105 0.4064 1.0888
X31 0.169 1.18 0.241 0.70 0.482 0.7389 1.8992
X41 16.8 2.02× 107 2360 0.01 0.994 0.0000 ∞
X42 16.9 2.25× 107 2360 0.01 0.994 0.0000 ∞

Table 10: Results of Cox-regression model estimation for F2016

After adjusting for the number of prior math courses, MPLEX and ACT scores, we are 95%
confident that the dropout rate of the population of STAT 216 students in S2016 semester who
are young is between about 59.36% lower to about 8.88% higher than the hazard rate of a student
who is old. From Table 10, we observe that the number of prior math courses taken has an effect

Test Chi-Square DF Pr>Chi-Sq

Likelihood Ratio 21.26 5 0.0007243
Wald 11.53 5 0.04179
Score(logrank) 17.09 5 0.004333

Table 11: Testing Global Null Hypothesis: BETA=0 (F2016)

on the survival probabilities for students in F2016 semester.
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(f) Spring 2017 Semester:
Finally, Figure 12 shows the log-cumulative hazard plot to assess the assumption of proportional
hazards for the S2017 semester. The log-rank test provides evidence that the survival distributions
differs between young and old students, but for the number of prior math courses taken, ACT and
MPLEX scores, there is little to no evidence that the survival distributions differ for students.
The cox proportional hazards model for the ith student is given as:

ĥi(t) = exp{−0.117X1i − 0.433X2i + 0.249X3i + 0.164X41i + 0.154X42i}h0(t)

where h0(t) is the hazard rate for a student with High number of prior math courses, old age, high
MPLEX and ACT scores.

Covariate coef exp(coef) se(coef) z Pr(> |z|) lower(.95) upper(.95)

X11 -0.117 0.890 0.258 -0.45 0.651 0.5365 1.476
X21 -0.433 0.649 0.260 -1.67 0.096 0.3899 1.079
X31 0.249 1.283 0.254 0.98 0.327 0.7798 2.110
X41 0.164 1.179 0.635 0.26 0.796 0.3397 4.090
X42 0.154 1.167 0.599 0.26 0.797 0.3604 3.778

Table 12: Results of Cox-regression model estimation for S2017

After adjusting for the number of prior math courses, Age and ACT scores, we are 95% confident
that the dropout rate of the population of STAT 216 students in S2016 semester with low MPLEX
scores is between about 22.02% lower to about 111% higher than the hazard rate of a student
with high MPLEX scores.

Test Chi-Square DF Pr>Chi-Sq

Likelihood Ratio 5.49 5 0.3592
Wald 5.7 5 0.3363
Score(logrank) 5.82 5 0.3245

Table 13: Testing Global Null Hypothesis: BETA=0 (S2017)

We also observe that there is little to no evidence that at least one covariate has an effect on the
time to student dropout in Spring 2017 semester. From Table 12, we observe that the none of the
covariates appear to have an effect on the survival probabilities for students in S2017 semester.

3.1.5 Estimating Percentiles of Survival Times

Given that the time to dropout was low for each semester, we estimate percentiles of survival times
with their associated 95% confidence intervals for each semester after controlling significant covariates.

(a) Fall 2014:

We are 95% confident that the 5th percentile of survival times is at least 74 days. In other words,
95% of students survived past at least 74 days, not adjusting for any of the factors considered.

(b) Spring 2015:

We are 95% confident that the 10th percentile of survival times is at least 99 days. That is, 90%
of students survived past at least 99 days, not adjusting for any of the factors considered.

(c) Fall 2015:
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i. For students in the population with high MPLEX scores, we are 95% confident that 95%
of students will survive at least 78 days to at most 80 days, not adjusting for other factors
considered.

ii. For students in the population with low MPLEX scores, we are 95% confident that 95% of
students will survive at least 63 days to at most 78 days, not adjusting for other factors
considered.

(d) Spring 2016:

i. For students in the population with high MPLEX scores and high number of prior math
courses, we are 95% confident that 90% of students will survive at least 98 days, not adjusting
for other factors considered.

ii. For students in the population with low MPLEX scores and high number of prior math courses,
we are 95% confident that 90% of students will survive at least 97 days to at most 98 days,
not adjusting for other factors considered.

iii. For students in the population with high MPLEX scores and low number of prior math courses,
we are 95% confident that 95% of students will survive at least 91 days, not adjusting for
other factors considered.

iv. For students in the population with low MPLEX scores and low number of prior math courses,
we are 95% confident that 90% of students will survive at least 81 days, not adjusting for
other factors considered.

(e) Fall 2016:

i. For students in the population with high number of prior math courses taken, we are 95%
confident that 95% of students will survive at least 60 days to at most 81 days, not adjusting
for other factors considered.

ii. For students in the population with low number of prior math courses taken, we are 95%
confident that 95% of students will survive at least 78 days, not adjusting for other factors
considered.

(f) Spring 2017:

We are 95% confident that the 10th percentile of survival times is at least 95 days. That is, 90%
of students survived past at least 95 days, not adjusting for any of the factors considered.

4 Summary and Conclusions

This study introduces some theories and modeling methods in survival analysis and applies the Cox
Proportional Hazards Model to analyze the time (days) to dropout for students enrolled in Introduction
to Statistics course at Montana State University between 2014/2015 - 2016/2017 academic years.

Based on this data, we observe that the Age and ACT scores of a student do not have an effect on
the time to dropout. However, for some semesters we were able to observe some association between
the number of prior math courses taken and/or the students MPLEX score. The

Further studies could therefore be done to determine which math courses are relevant to improve on a
students ability to survive int he course, and whether or not the MPLEX score required for students
to be eligible to take the STAT 216 course be adjusted.
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Finally, given that the data obtained limited the ability to assess the effect of other factors on the
time to dropout, we recommend that other factors need to be examined. Results of other methods
such as Bayesian survival analysis could be compared to these results.

Limitations of the study are as follows: The study is was conducted based on secondary data from
two sources which might have incomplete and biased information. Also information might have been
missed during the merging process and in the case of many censored observations, given that a very
high proportion of students completed the course in given semester. Thus the cause of student dropout
may not be determined accurately. Results may also only be inferred to the students in the study and
other similar students at Montana State University, Bozeman.
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5 Appendix

No. of No. of %
TERM Category dropout censored Total dropout

F2014 Low 5 151 156 3.21
High 11 129 140 7.86

S2015 Low 8 100 108 7.41
High 15 117 132 11.36

F2015 Low 40 431 471 8.49
High 38 311 349 10.89

S2016 Low 10 180 190 5.26
High 58 392 450 12.89

F2016 Low 24 395 419 5.73
High 52 394 446 11.66

S2017 Low 25 239 264 9.47
High 45 332 377 11.94

Table 14: Number of prior math courses taken by students and status of survival.

No. of No. of %
TERM Class dropout censored Total dropout

F2014 Young 9 210 219 4.11
Old 7 70 77 9.09

S2015 Young 19 149 168 11.31
Old 4 68 72 5.56

F2015 Young 56 605 661 8.47
Old 22 137 159 13.84

S2016 Young 47 426 473 9.94
Old 21 146 167 12.57

F2016 Young 50 617 667 7.50
Old 26 172 198 13.13

S2017 Young 44 427 471 9.34
Old 26 144 170 15.29

Table 15: Age classes of students in years by status of survival.

No. of No. of %
TERM Category dropout censored Total dropout

F2014 Low 9 106 115 7.83
High 7 174 181 3.87

S2015 Low 10 83 93 10.75
High 13 134 147 8.84

F2015 Low 37 219 256 14.45
High 41 523 564 7.27

S2016 Low 33 181 214 15.42
High 35 391 426 8.22

F2016 Low 33 275 308 10.71
High 43 514 557 7.72

S2017 Low 29 183 212 13.68
High 41 388 429 9.56

Table 16: MPLEX scores for students according to status of survival.
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No. of No. of %
TERM Category dropout censored Total dropout

F2014 Low 4 50 54 7.41
Moderate 11 212 223 4.93
High 1 18 19 5.26

S2015 Low 5 42 47 10.64
Moderate 18 171 189 9.52
High 0 4 4 0.00

F2015 Low 18 111 129 13.95
Moderate 59 558 647 9.12
High 1 43 44 2.27

S2016 Low 22 135 157 14.01
Moderate 42 411 453 9.27
High 4 26 30 13.33

F2016 Low 18 152 170 10.59
Moderate 58 587 645 8.99
High 0 50 50 0.00

S2017 Low 19 133 152 12.5
Moderate 48 406 454 10.57
High 3 32 35 8.57

Table 17: ACT scores for students according to status of survival.

Figure 8: Log Cumulative Hazard Plot for each covariate in the S2015 semester
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Figure 9: Log Cumulative Hazard Plot for each covariate in the F2015 semester

Figure 10: Log Cumulative Hazard Plot for each covariate in the S2016 semester
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Figure 11: Log Cumulative Hazard Plot for each covariate in the F2016 semester

Figure 12: Log Cumulative Hazard Plot for each covariate in the S2017 semester
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