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Abstract

Count data often exhibit more variation than what is assumed
by Poisson distribution. This is known as over-dispersion.[1] When
over-dispersion is present, standard errors of estimated parameters are
underestimated. Several models and standard error estimators have
been developed to accommodate this phenomenon. This paper seeks
to discuss four of them; the quasi-Poisson regression model, nega-
tive binomial regression model, Poisson regression model with robust
standard errors and Poisson regression model with bootstrap stan-
dard errors. A simulation study is conducted to compare prediction
errors and standard errors obtained from implementing the models
and standard error estimators discussed. Results showed similar pre-
diction errors and standard errors for all methods discussed. We then
present an example of modeling diamond prices and provide estimates
of parameters and standard errors using models and standard error
estimators discussed. Results indicated similar parameter estimates
for the quasi-Poisson regression model, Poisson regression model with
robust standard errors and, Poisson regression model with bootstrap
standard errors but not the negative binomial regression and simi-
lar standard errors for the quasi-Poisson regression model, negative
binomial regression model, and Poisson regression model with boot-
strap standard errors but not the Poisson regression model with robust
standard errors.

1 Introduction

The Poisson regression model is often used to model count data due to

its simplicity in interpretations. This model, like all parametric regression

models, is based on an underlying probability distribution function for the

response variable. To no surprise, the underlying probability distribution

function of the response is the Poisson distribution. One fundamental feature

of this distribution is that the mean and variance of the random variable is
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the same. This is known as equidispersion [2]. Practically, we may never see

this happen but large deviations from equidispersion leads to underestimated

standard errors of estimated covariates and thereby leading to p-values that

are too small, confidence intervals of estimates that are too narrow and an

inflated type I error rate. Over-dispersion is the phenomenon where the

variance observed for the response variable is larger than what is assumed

for the variable.

Consider an example of 54,000 diamond prices. These prices come from

a dataset in ggplot2 package called diamonds (Wickham 2009) along with

attributes like cut, color, carat, clarity of the diamonds. The prices are

treated as a count variable because it is made up of discrete values (only

dollars and no cents). Figure 1 shows a histogram of prices of the diamonds.

From the histogram, we can see that the distribution of the prices are highly

skewed to the right. We can also see that the sample mean price is $3933

where as the sample variance of the prices is well over $ squared 15,915,629.

Fitting a Poisson regression regression to the data will lead to issues with

over-dispersion since will be assuming an equal mean and variance while the

observed variance is about 4000 times of the mean. When over-dispersion is

present, a basic Poisson regression model no longer remains suitable. As a

result, several count models and methods have been developed which relax

this assumption. These models or methods may re-define the variance struc-

ture by including an additional parameter to account for over-dispersion in
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the response variable, change the underlying probability distribution or use

other ways to obtain the correct standard errors. In this paper, we will con-

sider the quasi-Poisson regression model, negative binomial regression model,

Poisson regression model with robust standard errors and Poisson regression

with bootstrap standard errors. The goal of this paper is to discuss and

assess whether these models or methods do provide the same results or are

different under certain conditions.

Figure 1: A histogram showing the frequency of the prices of the diamonds
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2 Methods for Handling Overdispersed Count

Data

Before we discuss the methods that accommodate over-dispersion, it is worth-

while to review the Poisson regression model since these methods of interest

are extensions and or modifications of the Poisson model.

2.1 Poisson Regression Model

Poisson regression assumes that the response variable Y , follows a Poisson

distribution with mean say, µ. The probability distribution of Y is given by:

f(y;µ) =
e−µµyi

yi!
, y = 0, 1, . . . , n;µ > 0

where y is the response - the number of occurrences of an event with mean

and variance equal to µ. The regression model is built on the assumption

that the log of the mean of these counts µ, can be modeled by a function of

some unknown parameters β and fixed predictors X. That is,

log(µ) = XTβ

xTβ is usually called the linear predictor since it is linear in the unknown

parameters. The log in the equation is the canonical link function which is

used by most generalized linear models. This link function guarantees that
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we realize positive values for the mean at all times.

2.2 Quasi-Poisson Regression Model

In many cases where we observe a greater variance for the response than the

mean, the quasi-Poisson regression model is used. This regression model uses

a quasi-likelihood method to obtain parameter estimates where the likelihood

function is not based on any probability distribution from the exponential

family of distributions but only characterized by its mean and variance. The

mean ad variance is given by:

E(Y ) = µ, µ > 0

V ar(Y ) = θµ, µ > 0; θ > 0

We can see that the mean is exactly like that of a Poisson distribution but

its variance has additional parameter. This additional parameter is the over-

dispersion parameter. It accommodates extra variation in the response such

that the variance function is now a linear function of the mean.

What makes the quasi-Poisson model more comparable to the Poisson

is the use of the same log canonical link function. Thus, a quasi-Poisson

regression is known to produce similar predictions as we would have obtained

with Poisson regression. The only difference are in standard errors values;

they are modified to result in ones that would been obtained if there was no

over-dispersion.
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2.3 Negative Binomial Regression Model

The negative binomial distribution is another distribution used for count

data. Consider a random variable, Y that follows a Poisson-gamma mixture

distribution with a mean and variance of µ where µ follows a gamma dis-

tribution with mean of 1. Then the marginal distribution of y results in a

negative binomial distribution. The probability mass function is given by:

f(y;µ, α) =
Γ(yi + 1/α)

yi!Γ(1/α)

(
1

1 + αµi

)1/α(
αµi

1 + αµi

)yi
(1)

with mean and variance respectively as:

E(Y ) = µ V ar(Y ) = µ+ αµ2 (2)

While the mean does not change from the mean of a Poisson distribution,

its variance has additional parameter, α. This additional parameter is the

over-dispersion parameter. It accommodates extra variation in the response

such that the variance function is now a quadratic function of the mean

which is different from the way the quasi-Poisson handles over-dispersion.

However, they both use the canonical link when modeling the mean making

both models comparable. The population regression model is given by:

log(µ) = XTβ (3)

XTβ is the linear predictor and log is the canonical link function.
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2.4 Poisson Regression Model with Robust Standard

Errors

Robust standard error estimators were first introduced by Huber (1967) and

then later independently by White (1980), thus they are also known as Huber

standard errors or White standard errors. They are popularly used in econo-

metrics to obtain unbiased standard errors for the estimates of the coefficients

in ordinary least squares regression when there is heteroscedasticity[2]. That

is, when the error variance is not constant.

The most popular type of robust standard error estimators are the sand-

wich estimators. The name emanates from the fact that the estimator is the

first derivative of the model likelihood function (score) enclosed in the second

derivative (Hessian). White (1980) showed that this estimator does not need

the underlining distribution of the response to be correctly specified. Thus,

they have been proven to also work well in cases like over-dispersion.

Robust estimation of standard errors is carried post-estimation of the

model. As a result, we do not expect the estimates of the coefficients to

be change; we only correct the estimates of the standard errors. Robust

standard error estimation for a Poisson regression model is implemented by

the following steps [3]:

1. Estimate model parameters using the Poisson regression model
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2. Determine the linear predictor matrix, Xβ

3. Determine the score vector which is the first derivative of the likelihood

function

g′ =
X∂L(Xβ)

∂Xβ

4. Adjust the degrees of freedom to be n(n− 1)

5. Calculate the new variance-covariance matrix as

H−1{n/(n− 1)
∑

(gg′)}H−1

where H represent the Hessian matrix of the likelihood function.

6. Exchange the old variance-covariance matrix with the new robust one.

2.5 Poisson Regression Model with Bootstrap Stan-

dard Errors

Bootstrapping involves creating samples from an original sample by method

of sampling with replacement. Estimates obtained from the bootstrapped

samples are only based on the data and do not require any parametric dis-

tributional assumptions. Therefore, we are able to find estimates whether

or not the distribution estimators have a close form, are misspecified or are

even not stated. For a Poisson regression model, bootstrap standard errors

are obtained from the following steps [4]:
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1. Randomly sample r independent bootstrap samples of size equal to

the size of the original sample B∗1,B
∗
2 . . .B

∗
r with replacement from the

data.

2. For each bootstrap sample, fit the Poisson regression model to obtain

estimates of the parameter β∗b0, . . . β
∗
bp for b = 1, . . . , r.

3. For each parameter, compute the standard error of the r estimates

obtained. ̂se(β) =

[
1

r − 1

r∑
b=1

{β̂∗b − β̂∗.}

]
where β∗. is the average of all r estimates of the parameter:

β∗. = r−1
B∑
b=1

β∗b

3 Simulation Study

One of the main goals when fitting a regression model is to make predictions.

A well-fitted regression model will produce predictions that are similar to

the observed data leading to smaller prediction errors. Parameter estimates

obtained from the regression model are also of interest since they are used

in predictions. Ideally, we want these estimates to be as precise as possible.

Standard errors of the estimates provide information on how precise our

estimates are. Smaller standard errors provide more precision. Thus, a

simulation study is conducted to compare prediction errors and standard
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errors of the parameter estimates for the methods discussed in the presence

of over-dispersed data. The simulation process was carried out under the

following conditions:

1. One predictor variable, x is sampled from a N(0, 1) distribution.

2. Samples of size n ∈ {100, 200, . . . , 1000} were randomly selected from

a Negative Binomial distribution with overdispersion parameters, α ∈

0.01, 0.1, 0.5, 1 and a mean function such that:

log(µ) = 8 + 0.2x

3. Each 10 × 4 combination of n and α is sampled 1000 times to be our

observed responses.

3.1 Comparing Prediction Errors

For each of the 1000 random samples from each n × α combination, the

root mean square error is computed and the mean of the 1000 root mean

square errors will is found. The root mean square error (RMSE) measures

the difference between the observed values and the values predicted using the

model, standardized by the sample size. Larger values of the RMSE indicate

more discrepancies between what is observed and what is predicted by the
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model. The RMSE is given by:

RMSE =

√∑n
i=1(yi − ŷi)

n

where ŷi is predicted response value obtained from fitting the model.

The following questions of interest to us:

1. How do prediction errors compare for a given sample size and over-

dispersion parameter?

2. How does sample size impact prediction errors?

3. How does the over-dispersion parameter impact prediction errors?

Figure 2 shows line graphs of the mean RMSE against sample size for each of

the four over-dispersion parameters. First, it is evident from the graph that

prediction errors are relatively not different for each for the four different

methods as the lines on the plot are very close to each other. This is actually

not surprising. Remember that the mean function does not change across the

four methods. This means that exp(xTβ) stays fairly the same so prediction

errors will also stay fairly equal. Secondly, we can see that for each line graph

in Figure 2, the mean RMSE increases as sample size increases. This can be

associated with increasing number of deviations being added as the sample

size is increasing. If we increase sample size then the number of deviations

to be added will increase which in result will increase the mean RMSE.

12



Lastly, the graph suggests an overall increase in mean RMSE when the over-

dispersion parameter increases. We can see that the mean RMSEs for over-

dispersion parameter of 0.01 ranges from about 300 to 318, however that of

over-dispersion parameter of 1 ranges from about 3000 to 3200. This makes

sense because as the over-dispersion parameter increases, the variability in

the response variable increases. More variability in the response means less

precise prediction leading to larger prediction errors.

Figure 2: Line graphs showing Mean RMSE against sample size for each of
the four over-dispersion parameter.
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3.2 Comparing Standard Errors

As we have seen the mean RMSE for a given sample size and over-dispersion

parameter are similar for all four methods. The next question one may ask is

“how do the estimates vary across the four methods for a given sample size

and over-dispersion parameter?” To do this, we can compare the distribution

of standard errors of the coefficient estimates. The questions of interest are:

1. How does the distribution of standard errors of the estimated slope

compare for a given sample size and over-dispersion parameter?

2. How does sample size impact the distribution of the standard errors of

the estimated slope?

3. How does the over-dispersion parameter impact standard error of the

estimated slope?

Figure 3 shows beanplots of the distributions of the estimated standard errors

of the slope coefficients of the four methods at a over-dispersion parameter of

0.1. From the plots, it is evident that there is no substantial difference among

the distributions of the standard errors at an over-dispersion parameter of

0.1. Actually, an over-dispersion parameter of 0.1 can be considered fairly

low. Thus with a small over-dispersion in the response, we will expect the

distribution of the standard errors to be similar across the methods. The

four plots in the figure represent the distribution at different samples sizes.

It is not too surprising that as the sample size increases the distribution gets
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narrower. Figure 4 shows beanplots of the distributions of the estimated

standard errors of the coefficients of the four methods at an over-dispersion

parameter, α of 1. The data used in these plots are considered to have more

variability in the response than those used in Figure 3. Overall, we can

see that the distributions are wider than when we have an over-dispersion

parameter of 0.1. Also, the distribution of bootstrap standard errors seems

to be slightly wider across sample sizes which can be attributed to taking

only 100 bootstrap samples.

Figure 3: Beanplots showing the distributions of the estimated standard
errors of the coefficients of the four methods at α = 0.1
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Figure 4: Beanplots showing the distributions of standard errors of the slope
coefficient four methods at α = 1

4 Diamond Price Example

4.1 The data

The dataset “diamonds” can be found in the ggplot2 package (Wickham

2009) and it contains information about the characteristics of 53940 dia-

monds. Table 2 describes the variables in the dataset. Our research goal is

to describe the relationship between the price of a diamond and the other
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attributes of the diamond.

Table 1: Descriptin of variables in the diamond dataset

Variable Description

Price Price of the diamond in USD

Carat The weight of the diamond

Cut The quality of the cut of the diamond (Fair, Good, Ideal, Premium, Very Good)

Color Diamond color (D, E, F, G, H, I, J)

Clarity A measurement of clarity of diamond (I1, IF, SI1, SI2, VS1, VS2, VVS1, VVS2)

Table Width of the top of the diamond relative to the widest point

x Length in mm

y Width in mm

z Depth in mm

Depth Total depth percentage =

(
2z

x+ y

)

4.2 Analysis

Figure 5 is a correlation/scatterplot matrix of the variables in the diamonds

dataset. From this plot we can see that variables x, y and z are all highly

correlated with carat. This indicates that if we fit a model including all four

variables in the model, we may have issues with multicollinearity. Based on

that, we choose to exclude x, y and z as covariates and use carat instead in

any model that will be fit.
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Figure 5: A correlation/scatterplot matrix of the variables

We now a fit a Poisson regression model to assess if there is overdispersion

in the data. The over-dispersion parameter is estimated to be 483.317 which

we expected based on the histogram in Figure 1. This suggests that the data

is over-dispersed and it is appropriate to use any of the models or methods

discussed.

For each of the methods being fit, the covariates considered are carat, depth,

table, cut with fair as the baseline group, color with D as the baseline group

and clarity with I1 as the baseline group.
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Table 2: Parameter estimates and standard errors of the quasi-Poisson, neg-
ative binomial, Poisson with robust standard errors and Poisson with boot-
strap standard errors regression models

Estimates Standard Errors

Variables Quasi-Poisson Neg.Bin. Robust SE Bootstrap SE Quasi-Poisson Neg.Bin. Robust SE Bootstrap SE

Intercept 5.12 5.21 5.12 5.12 0.107 0.102 0.198 0.105

Carat 1.66 2.29 1.66 1.66 0.003 0.003 0.014 0.025

Depth 0.00 0.00 0.00 0.00 0.001 0.001 0.002 0.010

Table 0.00 0.01 0.00 0.00 0.001 0.001 0.001 0.001

CutGood 0.17 0.04 0.17 0.17 0.010 0.009 0.040 0.080

CutIdeal 0.22 0.10 0.22 0.22 0.010 0.009 0.039 0.011

CutPremium 0.18 0.04 0.18 0.18 0.009 0.009 0.040 0.009

CutVeryGood 0.21 0.01 0.21 0.21 0.009 0.009 0.039 0.009

ColorE -0.06 -0.06 -0.06 -0.06 0.006 0.005 0.008 0.007

ColorF -0.03 -0.07 -0.03 -0.03 0.006 0.005 0.008 0.006

ColorG -0.10 -0.15 -0.10 -0.10 0.006 0.005 0.009 0.060

ColorH -0.25 -0.27 -0.25 -0.25 0.006 0.005 0.011 0.005

ColorI -0.42 -0.43 -0.42 -0.42 0.006 0.006 0.014 0.006

ColorJ -0.64 -0.58 -0.64 -0.64 0.008 0.007 0.018 0.070

ClarityIF 1.68 0.95 1.68 1.68 0.017 0.014 0.123 0.018

ClaritySI1 1.35 0.61 1.35 1.35 0.014 0.012 0.127 0.015

ClaritySI2 1.11 0.44 1.11 1.11 0.014 0.012 0.131 0.015

ClarityVS1 1.55 0.78 1.56 1.56 0.014 0.012 0.125 0.014

ClarityVS2 1.47 0.71 1.47 1.47 0.014 0.012 0.126 0.014

ClarityVVS1 1.57 0.86 1.57 1.57 0.016 0.013 0.122 0.015

ClarityVVS2 1.63 0.85 1.63 1.63 0.015 0.013 0.123 0.014

Table 3 shows the parameter estimates and their standard errors of the quasi-

Poisson, negative binomial, Poisson with robust standard errors and Poisson

with bootstrap standard errors regression models. We can see we have that

the parameter estimates are very similar for all methods except the negative

binomial model which has slightly lower estimates. The standard errors of

the parameter estimates are also very similar for the model except for the
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robust standard errors which has slightly higher values.

Table 3: RMSE of the quasi-Poisson, negative binomial, Poisson with robust
standard errors and Poisson with bootstrap standard errors regression models

Model RMSE

Quasi-Poisson 2747.653

Negative Binomial 59113.17

Robust SE 2747.653

Bootstrap SE 2747.653

Table 4 shows the RMSEs for the four methods discussed. From the table we

can see that the RMSE for the quasi-Poisson, Poisson with robust standard

errors and Poisson with bootstrap standard errors regression models are all

the same and the RMSE for the negative binomial model is higher.

5 Conclusions and Discussions

In this paper, we presented the problem of over-dispersion and extensions

of the Poisson regression model that deal with it. A simulation study was

then carried out to compare the prediction errors and standard errors of

estimated parameters. As an example, we fit regression models to determine

the relationship between a price and certain other attributes of a diamond

and also compare parameter estimates and their standard errors across the
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models and methods discussed.

In the simulation study, we observed similar prediction errors and standard

errors of the estimated paramters across the models and methods discussed.

We also observed that higher prediction errors were associated with larger

sample sizes and larger over-dispersion parameters. It was not too surprising

to see the variability of the distribution of standard errors decrease as sample

size increase but we also saw that with an increase in the over-dispersion

parameter, the variability of the standard error distribution decreased.

In our analysis of the example data, we observed similar parameter esti-

mates for all but the negative binomial regression. We also saw that the

prediction error for the negative binomial was higher than the rest of the

methods. We may attribute this to the prices not coming from Poisson-

Gamma mixture distribution that results in a negative binomial rather some

other type of Poisson mixture distribution like Poisson-Lognormal or Poisson-

Inverse Gaussian distribution.

Some recommendations for further research will be to consider other mod-

els that allow for over-dispersion in the data like a quasi-negative binomial

model, Poisson mixture model with a heterogeneous shape parameter that

follows say an inverse gaussian or a lognormal distribution, or non parame-

teric regression models.
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7 Appendix

7.1 Rcode

require(MASS)

require(car)

require(sandwich)

require(ggplot2)

require(ggpubr)

require(DescTools)

require(boot)

require(tidyverse)

##Importing Dataset##

dia<-read.csv("~/diamonds.csv")

var(dia$price)

mean(dia$price)

##Exploratory Data Analysis##

#Histogram of price#

p<-ggplot(dia, aes(price)) +

geom_histogram(bins = 80, fill="#ffffff", colour="black")+theme_bw()

p+annotate("text", x = 11000, y = 4300, label = "Mean = $3,932.8",

size = 7)+annotate("text", x = 11000,

y = 3700, label = "Variance = $15,915,629", size = 7)+

labs(x="Prices (in dollars)", y = "Count")

##Simulations###
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##RMSE##

alpha<-c(0.01,0.1,0.5,1)

n<-seq(100,1000,100)

num.sims<-100

plot<-list()

for(k in 1:length(alpha)){

mean.rmse.qp<-c()

mean.rmse.nb<-c()

mean.rmse.rv<-c()

mean.rmse.bs<-c()

for(j in 1: length(n)){

r.qp<-c()

r.nb<-c()

r.rv<-c()

r.bs<-c()

for( i in 1:num.sims){

x<-matrix(c(rep(1,n[j]),rnorm(n[j])),n[j],2)

b<-matrix(c(8,0.2),2,1)

mu<-exp(x%*%b)

mu

y<-rnegbin(n=n[j], mu = mu,theta =( 1/(alpha[k])))

x<-x[,-1]

sim.data<-data.frame(y,x)

y.qp<-glm(y~.,family = quasipoisson(link = "log"), data = sim.data)

r.qp[i]<-sqrt(sum((y-fitted(y.qp))^2)/n[j])

y.nb<-glm.nb(y~.,init.theta = 1, data = sim.data)
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r.nb[i]<-sqrt(sum((y-fitted(y.nb))^2)/n[j])

y.rv<-glm(y~.,family = poisson(link = "log"), data = sim.data)

r.rv[i]<-sqrt(sum((y-fitted(y.rv))^2)/n[j])

y.bs<-glm(y~.,family = poisson(link = "log"), data = sim.data)

r.bs[i]<-sqrt(sum((y-fitted(y.bs))^2)/n[j])

}

mean.rmse.qp[j]<-mean(r.qp)

mean.rmse.nb[j]<-mean(r.nb)

mean.rmse.rv[j]<-mean(r.rv)

mean.rmse.bs[j]<-mean(r.bs)

}

data.plot<-data.frame(n,mean.rmse.qp,mean.rmse.nb,mean.rmse.rv,mean.rmse.bs)

plot[[k]]<- ggplot(data=data.plot, aes(x = n)) +theme_bw()+

ylab(label = "Mean RMSE")+

xlab(label = "Sample Size")+

theme(legend.position="none")+

geom_line(aes(y = mean.rmse.qp, linetype = "Quasi Poisson"))+

geom_point(aes(y = mean.rmse.qp))+

geom_line(aes(y = mean.rmse.nb, linetype = "Negative Binomial"))+

geom_point(aes(y = mean.rmse.nb))+

geom_line(aes(y = mean.rmse.rv, linetype = "Robust SE"))+

geom_point(aes(y = mean.rmse.rv))+

geom_line(aes(y = mean.rmse.bs, linetype = "Bootstrap SE"))+

geom_point(aes(y = mean.rmse.bs))

}

ggarrange(plot[[1]],plot[[2]],plot[[3]],plot[[4]],

labels = c("dispersion parameter = 0.01", "dispersion parameter = 0.1",

"dispersion parameter = 0.5","dispersion parameter = 1"),

legend = "bottom", common.legend = T,ncol = 2, nrow = 2)

##Standard Errors##

num.sims<-1000
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n<-c(50,100,500,1000)

plot<-list()

for (j in 1:length(n)){

s.qp<-c()

s.nb<-c()

s.rv<-c()

s.bs<-c()

for (i in 1:num.sims){

x<-matrix(c(rep(1,n[j]),runif(n[j])),n[j],2)

b<-matrix(c(8,0.2),2,1)

mu<-exp(x%*%b)

y<-rnegbin(n=n[j], mu = mu,theta =1)

x<-x[,-1]

sim.data<-data.frame(y,x)

##quasipoisson##

y.qp<-glm(y~.,family = quasipoisson(link = "log"), data = sim.data)

s.qp[i]<-summary(y.qp)$coefficients[2,2]

summary(y.qp)

##neg bin###

y.nb<-glm.nb(y~.,init.theta = 1, data = sim.data)

s.nb[i]<-summary(y.nb)$coefficients[2,2]

##robust se##

y.rv<-glm(y~.,family = poisson(link = "log"), data = sim.data)

s.rv[i]<-sqrt(diag(vcovHC(y.rv, type="HC0")))[2]

summary(y.rv)

##bootstrap se##

se <- function(d,indices) {

d <- d[indices,]

fit <- glm(y~., family = poisson(link = "log"), data = d)

return(coef(fit))
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}

bse <- boot(

data = sim.data,

statistic = se,

R = 100

)

s.bs[i]<-summary(bse)$bootSE[2]

}

se.values<-c(s.qp,s.nb,s.rv,s.bs)

Model<-as.factor(c(rep("QuasiPoisson",n[j]), rep("Negative Binomial",n[j]),

rep("Robust SE",n[j]),rep("Bootstrap SE",n[j])))

data.se<-data.frame(Model,se.values)

plot[[j]]<-ggplot(data.se, aes(x=Model, y=se.values, fill = Model))+

scale_fill_grey() + theme_classic()+

geom_violin(trim=FALSE)+stat_summary(fun.y=mean, geom="point",

shape=23, size=2)+theme(legend.position="none")+ylim(0,1)

}

ggarrange(plot[[1]],plot[[2]],plot[[3]], plot[[4]],

labels = c("n = 50", "n =100",

"n = 500","n = 1000"),legend = "bottom", common.legend = T,ncol = 2, nrow = 2)

###Power###

num.sims<-1000

n<-c(50,100,500,1000)
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p.qp<-c()

p.nb<-c()

p.rv<-c()

p.bs<-c()

for (j in 1:length(n)){

qp<-c()

nb<-c()

rv<-c()

bs<-c()

for (i in 1:num.sims){

x<-matrix(c(rep(1,n[j]),runif(n[j])),n[j],2)

b<-matrix(c(8,0.2),2,1)

mu<-exp(x%*%b)

y<-rnegbin(n=n[j], mu = mu,theta =0.1)

x<-x[,-1]

sim.data<-data.frame(y,x)

##quasipoisson##

y.qp<-glm(y~.,family = quasipoisson(link = "log"), data = sim.data)

if (summary(y.qp)$coefficients[2,4]<0.05) {

qp[i]<-1

} else {

qp[i]<-0

}

##neg bin###

y.nb<-glm.nb(y~.,init.theta = 1, data = sim.data)

if (summary(y.nb)$coefficients[2,4]<0.05) {

nb[i]<-1

} else {

nb[i]<-0

}

##robust se##
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y.rv<-glm(y~.,family = poisson(link = "log"), data = sim.data)

z.stat<-(summary(y.rv)$coefficients[2,1])/

(sqrt(diag(vcovHC(y.rv, type="HC0")))[2])

pval<-2*(1-pnorm(z.stat))

if (pval<0.05) {

rv[i]<-1

} else {

rv[i]<-0

}

##bootstrap se##

se <- function(d,indices) {

d <- d[indices,]

fit <- glm(y~., family = poisson(link = "log"), data = d)

return(coef(fit))

}

bse <- boot(

data = sim.data,

statistic = se,

R = 100

)

z.stat<-(summary(y.rv)$coefficients[2,1])/(summary(bse)$bootSE[2])

pval<-2*(1-pnorm(z.stat))

if (pval<0.05) {

bs[i]<-1

} else {

bs[i]<-0

}

}

p.qp[j]<-sum(qp == 1)/1000

p.nb[j]<-sum(nb == 1)/1000

p.rv[j]<-sum(rv == 1)/1000

p.bs[j]<-sum(bs == 1)/1000
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}

power<-t(cbind(t(p.qp),t(p.nb),t(p.rv),t(p.bs)))

model<-c(rep("qp",4),rep("nb",4),rep("rv",4),rep("bs",4))

size<-rep(c(5,100,500,1000), 4)

alpha<-rep(0.1)

###Data Analysis

data.power<-cbind(data.power,data.frame(alpha,model,size,power))

View(data.power)

dia2<-dia[c(-5,-6,-7)]

View(dia2)

##qp##

fit<-glm(price~.,family = quasipoisson(link = "log"), data = dia2)

summary(fit)

##nb##

fit<-glm.nb(price~.,init.theta = 1, data = dia2)

summary(fit)

##rv##

fit<-glm(price~.,family = poisson(link = "log"), data = dia2)

summary(fit)

data.frame(as.vector(sqrt(diag(vcovHC(fit, type="HC0")))

))

##bs##

se <- function(dia2,indices) {

d <- d[indices,]

fit <- glm(price~., family = poisson(link = "log"), data = dia2)

return(coef(fit))

}

bse <- boot(

data = dia2,
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statistic = se,

R = 100

)

bse
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