HOMEWORK 1 SOLUTIONS
1.1.4 (a) Prove that AC B iff AN B = A.

Proof. First assume that A C B. If x € AN B, then x € A and x € B by
definition, so in particular x € A. This proves AN B C A. Now if x € A,
then by assumption ¢ € B, too, so x € AN B. This proves A C AN B.
Together this implies A = AN B.

Now assume that AN B = A. If x € A, then by assumption x € AN B, so
z € A and x € B. In particular, x € B. This proves A C B. O

1.1.4 (b) Prove ANB = A\ (A\ B).

Proof. Let © € AN B. Then x € A and x € B. In particular, z ¢ A\ B
(because x € A\ B would imply z ¢ B). Sox € A\ (A\ B). This shows
ANB C A\(A\B). Now let z € A\(A\B). Thenz € Aand z ¢ A\B. This
means that © ¢ A or x € B (the negation of x € A and = ¢ B). Since we
know = € A, this implies z € B, sox € ANB. This shows A\(A\B) C ANB.
Together with the first part this shows AN B = A\ (4\ B). O

1.1.4 (c) Prove (A\ B)U(B\ A) = (AU B)\ (AN B).

Proof. Let x € (A\ B)U(B\ A). Thenx € A\Borxz € B\A. In
the first case, this implies © € A and = ¢ B. From this we get z € A or
x € B (since the first of those statements is true), so z € AU B. We also
get that z ¢ AN B (because z ¢ B),sox € (AUB)\ (AN B). In the
second case we get x € B and x ¢ A, so by the same argument x € AU B
and x ¢ AN B. Again we conclude x € (AU B) \ (AN B). This shows
(A\B)U(B\A)C (AUB)\ (AN B).

Now let x € (AUB)\ (ANDB). Thenx € Aorz € B,and z ¢ ANB. If
x € A, then x ¢ B (because otherwise x € ANB),sox € A\ B. If x ¢ A,
then by assumption x € B, so z € B\ A. In either case, z € (A\B)U(B\A).
This shows (AUB)\ (ANB) Cx e (A\B)U(B\ A). Together with the
first part this shows the claimed set equality. O

1.1.4 (d) Prove that (ANB) xC =(AxC)N (B x C).

Proof. It p € (AN B) x C, then p = (z,y) with x € AN B and y € C.
This means © € A, z € B and y € C, and thus (z,y) € A x C and
(z,y) € B x C. This implies p = (z,y) € (A x C) N (B x C). This proves
(ANB)xCC(AxC)Nn(BxC(O).

Ifpe(AxC)N(BxC),thenpe AxCandp e BxC,sop=(z,y) with
r€Aandy € C,and x € B and y € C. This impliesz € ANB and y € C,
sop=(z,y) € (ANB) x C. This proves (Ax C)N(BxC)C (ANB) xC.
Together the two inclusions prove the claimed equality. O
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1.1.4 (e) Prove that AN B and A\ B are disjoint, and that A = (AN B)U
(A\ B).

Proof. For the first part we have to prove that (AN B)N(A\ B) = (. Let
r € (ANB)N(A\B). Then x € ANBand x € A\ B, so x € A and
x € B,and z € A and x ¢ B. In particular, this implies z € B and z= ¢ B,

which is a contradiction. I.e., there can be no such x and we proved that
(ANB)N(A\ B)=10.
For the set equality, let © € A be arbitrary. Then either x € B or = ¢ B.

In the first case, © € AN B, in the second case z € A\ B. In either case,
x € (ANB)U(A\ B). This shows A C (ANB)U (A\ B).
Now let z € (ANB)U(A\ B). Then x € AN B or z € A\ B. Either case

implies © € A by definition. This shows (AN B)U (A \ B) C A. Together
the two inclusions show the claimed set equality. O

1.2.5 Prove that if a function f has a maximum, then sup f exists and
max f = sup f.

Proof. For the existence of the supremum we have to show that f is bounded
above, and for the claimed equality we have to show that max f is the least
upper bound for f.

By definition of the maximum, there exists z¢o € X with f(z) < f(xo) =
max f for all x € X. This shows that max f is an upper bound for f, and
that the supremum of f exists.

Now choose an arbitrary M € R with M < max f. Then M < f(x¢), and
thus M is not an upper bound. This shows that max f is the least upper
bound, i.e., max f = sup f. O

1.2.22 Suppose that f: X — Y.

For the following proofs we break down the “if and only if” into both di-
rections. The symbol “=" means that we show that the first assumption
implies the second one, the symbol “<=" means that we are proving that
the second assumption implies the first one. Similarly we break down the
proof of set equalities into the two inclusions “C” and “D7”.

1.2.22 (a) Prove that f(ANB) = f(A)N f(B) for all A,B C X iff f is

injective.

Proof. We show the implications separately.

= Let z1,22 € X be arbitrary with f(z;) = f(z2). Let A = {z1} and
B = {22}, By assumption, f(AN B) = F(A) N f(B) = {f(z1)} N { f(z2)} =
{f(x1)}. This implies that there exists an element x € AN B with f(z) =
f(x1). Since x € A and = € B we have that x = x; and x = x9, and hence
x1 = x9. This shows that f is injective.



<=: This breaks down into two parts itself.

C: Let y € f(AN B). Then there exists + € AN B with f(x) = y. This
implies that © € A and € B with f(z) =y, thus y € f(A) and y € f(B).
By definition, y € f(A) N f(B).

O: Let y € f(A)n f(B). Then y € f(A) and y € f(B). Thus there
exists 1 € A with f(z1) = y and there exists zo € B with f(z2) = y. By

injectivity of f we have x1 = x9, and thus 1 € B, too. So 1 € AN B and
hence y = f(z1) € f(AN B). O

1.2.22 (b) Prove that f(A\ B) = f(A) \ f(B) for all A,B C X iff f is

injective.

Proof. Set difference is intersection with the complement, so this proof mim-
icks the proof in (a).

= Let x1,29 € X be arbitrary with f(z1) = f(z2). Let A = {z1} and
B = {x3}. By assumption, f(A\B) = f(A)\ f(B) = {f ()} \{f(z2)} = 0.
This implies that A\ B = 0, and hence {x1} \ {2} = 0. This means that
x1 = x2 (because otherwise {z1} \ {x2} = {x1}). This shows that f is
injective.

<=: This breaks down into two parts itself.

C: Let y € f(A\ B). Then there exists z € A\ B with f(z) = y. This
implies that € A and = ¢ B with f(z) = y. We can immediately deduce
y € f(A). Now we have to show that y ¢ f(B). Assume to the contrary
that y € f(B). Then there exists x1 € B with f(x1) = y. By injectivity of
f, we get © = x1, and thus x € B and = ¢ B, a contradiction. This shows
that y ¢ f(B), and thus y € f(A) \ f(B).

O: Let y € f(A)\ f(B). Then y € f(A) and y ¢ f(B). Thus there exists
x € A with f(x) =y. If x € B, then y € f(B), which contradicts the
previous statement, so we must have z ¢ B. This implies z € A\ B, and

hence y € f(A\ B). O
1.2.22 (c) Prove that f~1(f(A)) = A for all A C X iff f is injective.

Proof. =>: Let x1,22 € X with f(z1) = f(22). Let A = {21}. Then
f(A) = {f(x1)}, and since f(x1) = f(x2) we have that 5 € f~1(f(A)). By
assumption f~1(f(A4)) = A, so 22 € A = {21}, and thus 71 = z5. This
shows that f is injective.
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Let x € f~1(f(A)). Then f(x) € f(A), hence there exists z1 € A with
= f(z). By injectivity, x = x1, so x € A.

DO: Let # € A. Then f(z) € f(A), and by definition this implies z €
FHF(A)). O
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1.2.22 (d) Prove that f(f~!(B)) = B for all B C Y iff f is surjective.

Proof. =>: Let y € Y arbitrary. We have to show that there exists x € X
with f(z) = y. Let B = {y}. By assumption, f(f~1(B)) = B = {y}, so
y € f(f~1(B)). By definition this means that there exists z € f~!(B) with
fl@) =y.

<

C: Let y € f(f~1(B)). Then there exists x € f~}(B) with f(z) = y. By
definition this means that y = f(z) € B.

D: Let y € B. By surjectivity of f there exists x € X with f(z) = y. This
implies that x € f~1(B). Then y = f(z) € f(f~1(B)). O

For problems 23 and 24 we will choose X = Y = R and the functions
f:R — R given by f(x) = 2. (Since f is neither injective nor surjective it
is a good candidate for counterexamples.)

1.2.23 (a) Find an example for which f=1(f(A)) # A.

A= {1} gives f(A) = {1} and f7(f(4)) = {-1, 1} # A.
1.2.23 (b) Find an example for which f(f~1(A)) # A.

A= {-1} gives f1(A) =0 and f(f~1(A)) =0 # A.

1.2.24 (a) Find an example for which f(AN B) # f(A) N f(B).
A={1} and B = {-1} give ANB =10, f(ANnB) =0, f(4) = {1} =
f(B) = f(A)N f(B) # f(AN B).

1.2.24 (b) Find an example for which f(A\ B) # f(A4) \ f(B).

A= {1} and B = {—1} give A\ B = {1}, f(A\ B) = {1}, f(4) = f(B) =
{1}, and f(A)\ f(B) =0 # f(A\ B).

As you can see, we could as well have chosen X =Y ={—1,1}and f: X —
Y given by f(1) = f(—1) =1 in all counterexamples.
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1.4.1 (a) The negation of “there exists p > 0 such that for every x we have
f(z+p) = f(x)” is “for all p > 0 there exists z with f(x + p) # f(z)”.

In formal notation with quantifiers (using = for logical equivalence):

~@p>0Ve: flz+p)=f(z)=Vp>03z: f(z+p)# f(z)
Mathematically, the original statement means that f is a periodic function.

1.4.1 (b) The negation of “for all ¢ > 0 there exists § > 0 such that
whenever x and ¢ are in D and satisfy |x — ¢| < 0, then |f(z) — f(t)| < €” is
“there exists € > 0 such that for every § > 0 there exist  and t in D with

[z —t| <6, but [f(z) — f()] = €.

Again the same in formal notation:

~(Me>030 >0V, te€D: |z —t|<d=|f(x)— f(t)] <e)

=3e>0Y0 > 03z, t € D: (Jx —t]| <) A(f(x) = f(t)] > €)
Mathematically, the original statement means that the function f is uni-
formly continuous in D.

1.4.1 (c) The negation of “for all € > 0 there exists § > 0 such that whenever
x € Dand 0 < |z —a| <, then |f(z) — A| <€’ is “there exists e > 0 such
that for all 6 > 0 there exists x € D with 0 < |x—a| < §, but |f(z)—A| > €.

In formal notation:

~Me>030>0VzeD:0<|z—a|l<d=|f(z)— Al <¢)
=3e>0Y0>03zeD: (0<|z—al <) A(f(x)—A| >e€)

Mathematically the original statement means that lim f(z) = A (assuming
r—a
that the domain of the function is D).

1.4.5 Consider the statement P: the sum of two irrational numbers is irra-
tional.

1.4.5 (a) Give an example of a case in which P is true.

V2 + V2 = 2V/2. (To show that 2V/2 is irrational, assume to the contrary
that 2v/2 = p/q with integers p and ¢. Then v/2 = p/(2¢) would be rational

as well. But we proved in class that this is not true, so this is a contradiction,
and thus 2v/2 is irrational.)

1.4.5 (b) Prove or disprove P by giving a counterexample.

The statement is not true in general: V2 and —v/2 are irrational, but their
sum v/2 + (—/2) = 0 is rational. (If you want an example with positive
numbers, choose V2 and 2 — V2. Irrationality of 2 — V2 follows in the same
way as that of 2v/2.)



