Sample Final, MATH 225, Spring 2008

This is a collection of problems to prepare for the final exam. If you can do all of these, you should be well on your way to a good grade. However, do not assume that the final exam itself will look exactly like this.

1. Determine the order of the differential equations, and state whether they are linear or nonlinear.

(a) $t^2y'' - y = \sin t$,

(b)
$$yy' = 1$$

2. Find the general solution of $y' = (1+t)y^2$.

3. Find the general solution of ty' = 2y - 3.

4. (a) Draw the phase line and classify the equilibrium points for $y' = 4 - y^2$.

(b) Draw the direction field and sketch several solutions of $y' = 4 - y^2$. What happens as $t \to \infty$, depending on the initial value $y(0) = y_0$?

5. One of the following two differential equations is exact. Find out which one it is, and find the general solution for it.

(a) $(2 + y \sin xy)dx + (1 + x \sin xy)dy = 0$

(b) $(2 + x \sin xy)dx + (1 + y \sin xy)dy = 0$

6. (a) Find the general solution of y''' + 3y'' + 3y' - 7y = 0.

(b) Find one solution of $y''' + 3y'' + 3y' - 7y = t^2 - 2e^t$.

7. (a) Find the general solution of y'' + 2y' + 2y = 0.

(b) Find one solution of $y'' + 2y' + 2y = e^{-t} \sec t$.

8. Find the first four terms in the power series solution of the initial value problem $y'' + \frac{y}{1-x} = 0, \ y(0) = 1, \ y'(0) = 0.$

9. (a) Find the Laplace transform of

$$g(t) = \begin{cases} 1, & t < 1\\ e^{2-2t}, & t \ge 1 \end{cases}$$

(b) Solve the initial value problem y'' + 2y' + y = g(t), y(0) = y'(0) = 0, where g(t) is the function from part (a).

10. Find the general solution of the system of differential equations

$$\begin{aligned} x_1' &= x_1 - 2x_2 \\ x_2' &= x_1 + 4x_2 \end{aligned}$$