HOMEWORK KEY M221 CHAPTER 1

SECTION 1.1

3. If $\mathbf{v} + \mathbf{w} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$ and $\mathbf{v} - \mathbf{w} = \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix}$, compute and draw \mathbf{v} and \mathbf{w} .

Solution: $\mathbf{v} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$.

8. The parallelogram in Figure 1.1 has diagonal $\mathbf{v} + \mathbf{w}$. What is its other diagonal? What is the sum of the two diagonals? Draw that vector sum.

Solution: The other diagonal is $\mathbf{v} - \mathbf{w}$ (or $\mathbf{w} - \mathbf{v}$). The sum of the two

diagonals is $2\mathbf{v}$ (or $2\mathbf{w}$).

18. (referring to Figure 1.5 (a)) Restricted by $0 \le c \le 1$ and $0 \le d \le 1$, shade in all combinations $c\mathbf{v} + d\mathbf{w}$.

31. Write down three equations for c, d, e so that $c\mathbf{u} + d\mathbf{v} + e\mathbf{w} = \mathbf{b}$. Can you somehow find c, d, and e?

$$\mathbf{u} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Solution: The equations are

$$2c - d = 1$$
, $-c + 2d - e = 0$, $-d + 2e = 0$.

The solution is $c=\frac{3}{4},\ d=\frac{1}{2},\ e=\frac{1}{4}.$ (There are various different ways to find this.)

1. Calculate the dot products $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{w}$ and $\mathbf{u} \cdot \mathbf{v} + \mathbf{w}$ and $\mathbf{w} \cdot \mathbf{v}$.

$$\mathbf{u} = \begin{bmatrix} -.6 \\ .8 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 8 \\ 6 \end{bmatrix}.$$

Solution: $\mathbf{u} \cdot \mathbf{v} = 1.4$, $\mathbf{u} \cdot \mathbf{w} = 0$, $\mathbf{u} \cdot \mathbf{v} + \mathbf{w} = 1.4$, $\mathbf{w} \cdot \mathbf{v} = 48$.

2. Compute the lengths ||u|| and ||v|| and ||w|| of those vectors. Check the Schwarz inequalities $|\mathbf{u} \cdot \mathbf{v}| \le ||u|| \, ||v||$ and $||\mathbf{v}|| \cdot ||\mathbf{w}|| \le ||v|| \, ||w||$.

Solution ||u|| = 1, ||v|| = 5, ||w|| = 10. Check $|1.4| \le 1 \cdot 5$ and $|48| \le 5 \cdot 10$. Both inequalities (1.4 < 5 and 48 < 50) are true.

7. Find the angle θ (from its cosine) between these pairs of vectors:

(a)
$$\mathbf{v} = \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Solution: $\mathbf{v} \cdot \mathbf{w} = 1 \cdot 1 + \sqrt{3} \cdot 0 = 1$, $||v|| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2$, ||w|| = 1, and $\theta = \cos^{-1} \frac{\mathbf{v} \cdot \mathbf{w}}{||v|| ||w||} = \cos^{-1} \frac{1}{2} = \frac{\pi}{3} = 60^{\circ}$.

(b)
$$\mathbf{v} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$.

Solution: $\mathbf{v} \cdot \mathbf{w} = 2 \cdot 2 + 2 \cdot (-1) + (-1) \cdot 2 = 0$, so these vectors are perpendicular, i.e., $\theta = \frac{\pi}{2} = 90^{\circ}$.

(c)
$$\mathbf{v} = \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} -1 \\ \sqrt{3} \end{bmatrix}$.

Solution: $\mathbf{v} \cdot \mathbf{w} = 1 \cdot (-1) + \sqrt{3} \cdot \sqrt{3} = 2$, ||v|| = ||w|| = 2, and $\theta = \cos^{-1} \frac{\mathbf{v} \cdot \mathbf{w}}{||v|| ||w||} = \cos^{-1} \frac{1}{2} = \frac{\pi}{3} = 60^{\circ}$.

(d)
$$\mathbf{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$.

Solution: $\mathbf{v} \cdot \mathbf{w} = 3 \cdot (-1) + 1 \cdot (-2) = -5$, $||v|| = \sqrt{3^2 + 1^2} = \sqrt{10}$, $||w|| = \sqrt{(-1)^2 + (-2)^2} = \sqrt{5}$, and $\theta = \cos^{-1} \frac{\mathbf{v} \cdot \mathbf{w}}{||v|| ||w||} = \cos^{-1} \frac{-5}{\sqrt{5}\sqrt{10}} = \cos^{-1} \left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4} = 135^{\circ}$.

13. Find two vectors that are perpendicular to (1,0,1) and to each other.

Solution: There are lots of solutions, one example is (1,0,-1) and (0,1,0).

27. If $\|\mathbf{v}\| = 5$ and $\|\mathbf{w}\| = 3$, what are the smallest and largest values of $\|\mathbf{v} - \mathbf{w}\|$? What are the smallest and largest values of $\mathbf{v} \cdot \mathbf{w}$?

Solution: Largest and smallest values for $\|\mathbf{v} - \mathbf{w}\|$ are 8 and 2, respectively. For $\mathbf{v} \cdot \mathbf{w}$ they are 15 and -15, respectively. For both questions the extreme

cases are when the vectors point in the same or in opposite directions, respectively. (Now I have definitely overused the word "respectively"...)

SECTION 1.3

6. Which values of c give dependent columns (combination equals zero)?

$$\begin{bmatrix} 1 & 3 & 5 \\ 1 & 2 & 4 \\ 1 & 1 & c \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & c \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} c & c & c \\ 2 & 1 & 5 \\ 3 & 3 & 6 \end{bmatrix}$$

Solution: c = 3, c = -1, and c = 0, respectively.

10. A forward difference matrix Δ is upper triangular:

$$\Delta \mathbf{z} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} z_2 - z_1 \\ z_3 - z_2 \\ 0 - z_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \mathbf{b}.$$

Find z_1, z_2, z_3 from b_1, b_2, b_3 . What is the inverse matrix $\mathbf{z} = \Delta^{-1} \mathbf{b}$?

Solution: $z_3 = -b_3$, $z_2 = z_3 - b_2 = -b_3 - b_2$, and $z_1 = z_2 - b_1 = -b_3 - b_2 - b_1$. The inverse matrix is

$$\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} -b_1 - b_2 - b_3 \\ -b_2 - b_3 \\ -b_3 \end{bmatrix} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \Delta^{-1} \mathbf{b}.$$

	· · · · · · · · · · · · · · · · · · ·		