Final Exam Review Key, M182, Spring 2013

1. Let m > 0 be a positive constant.

(a) Find the area of the region enclosed by the graphs of y = 22 and y = mux.

m 2 31m 3 3 3
A= D= |
/O(mx @) dz [2 35/, 2 3" 6

(b) Set up the integrals for, but do not evaluate, the volume and the surface area of the
solid obtained by rotating the region in (a) about the z-axis.
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2. How much work is done lifting a 12-m chain that has mass density 3 kg/m (initially
coiled on the ground) so that its top end is 10 m above the ground?

The part of the chain between x and x + Ax meters above the ground has mass Am =
3Az (kg), and it is lifted ~ = meters agains the force of gravity AF = (Am)g = 3Az-9.81
(Newton), so the work on this part of the chain against gravity is AW = (AF)z =
3Az - 9.81x (Joules). The total work is obtained by integrating as
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3. Evaluate the following integrals.
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Substituting z = 3sin 6 gives
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4. Determine for which p > 0 the improper integral dx converges.
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Comparing to p-integrals gives convergence for p > 4, divergence for p < 4.

5. Find the Taylor polynomial Ty(z) centered at x = 1, for the function f(z) = zInzx.

Ti(w) = (1) + (o — 1 - %(m “1P @1

6. Solve the differential equation 3 = 1 — 32 with initial value 3(0) = 0.

Separating variables, integrating, solving for y, finding C' from the initial value, gives:
dy 1
T2 dm:i(ln(1+y)—ln(1—y)):m+0, soC=0
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7. Determine whether the following series converge absolutely, conditionally, or not at
all.
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Converges absolutely, e.g., by root test.
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Converges by Leibniz test, but does not converge absolutely by comparison with > %,
so it converges conditionally.

Converges absolutely as a geometric series with r = %2
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8. Find the radius of convergence of E ) x". (No need to test the endpoints here.)
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This limit is less than 1 if |x| < 4, and greater than 1 if |x| > 4, so the radius of
convergence is R = 4.



9. Find the Taylor series of f(z) = tan~!(2x) centered at ¢ = 0, and determine the
interval on which it converges.
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by the geometric series with r = —4x?, for |z| < 1/2. Integrating and observing that
f(0) =0 gives
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Radius of convergence is again R = 1/2 (does not change by integrating), but the
behavior at the endpoints changes:

For z = 1/2 we get
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which converges by the Leibniz test. For x = —1/2 we get the same series without
alternating signs, i.e.,
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which diverges by limit comparison with ) % Combining these statements, the interval
of convergence is (—1/2,1/2].



