Final Exam Review Problems, M182, Spring 2013

1. Let m > 0 be a positive constant.

(a) Find the area of the region enclosed by the graphs of $y = x^2$ and y = mx.

(b) Set up the integrals for, but do not evaluate, the volume and the surface area of the solid obtained by rotating the region in (a) about the x-axis.

2. How much work is done lifting a 12-m chain that has mass density 3 kg/m (initially coiled on the ground) so that its top end is 10 m above the ground?

3. Evaluate the following integrals.

(a)
$$\int x^2 e^{4x} dx$$

(b)
$$\int \frac{2x-1}{x^2-5x+6} dx$$

(c)
$$\int \ln(x^2+9) dx$$

(d)
$$\int \frac{dx}{\sqrt{9-x^2}} dx$$

4. Determine for which p > 0 the improper integral $\int_0^\infty \frac{x}{\sqrt{x^p + 1}} dx$ converges.

- 5. Find the Taylor polynomial $T_4(x)$ centered at x = 1, for the function $f(x) = x \ln x$.
- **6.** Solve the differential equation $y' = 1 y^2$ with initial value y(0) = 0.

7. Determine whether the following series converge absolutely, conditionally, or not at all.

(a)
$$\sum_{n=1}^{\infty} \left(-\frac{1}{n}\right)^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+\sqrt{n}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{3^n}$$

8. Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} x^n$. (No need to test the endpoints here.)

9. Find the Taylor series of $f(x) = \tan^{-1}(2x)$ centered at c = 0, and determine the interval on which it converges.