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Introduction

Edge effects ate the interactions between 2 adjacent, though abruptly separated, ecosystems (Mutcia,
1995). In the Pacific Northwest the harvesting of trees has created a fragmented landscape, and

there is interest in studying the edge effects that occur within oldgrowth forest adjacent to clearcuts.

The oldgrowth forest ecosystem, having evolved over millions of years, is very efficient at cycling
nutrients. When a tree dies or needles fall to the ground, a diverse assemblage of microotganisms
speeds decomposition and utilizes neatly all of the nutrients. Thus nutrients remain in the system
and are eventually cycled back into living trees. ‘This assemblage includes worms and mites, many
species of bactetia, and mycorrhizal fungi which tap symbiotically into the roots of trees and funnel
micronuttients into the trees’ root system in exchange for photosynthetically fixed carbon. In an
oldgrowth forest the air is cool and moist even on hot summer days, but in a clearcut, with no
canopy of trees for insulation, temperatures soar and moisture levels drop. On clear nights, at any
time of year, temperatures can drop radically in a clearcut due to radiation loss. It is thought that

this variability in microclimate, coupled with the loss of living tree roots, harms the communities of



microotganisms that inhabit the soil, which, in turn, impacts the cycling of nutrients and causes

nitrogen to be lost from the system.

Scientists interested in the ramifications of global climate change would like to predict how
Northwest forests will respond to long-term changes in temperature. One possibility is that trees
will grow faster and become a sink for carbon on a global scale. But nitrogen is a limiting nutrient in
forest growth, so it is of interest to undetstand how much nitrogen is lost in a clearcut, and through
which pathways this loss occurs. On a regional scale, due to the fragmentation of the forest, the
edge environment may also conttibute significantly to the loss of nitrogen. This paper describes the
analysis of data from a study that is attempting to quantify the microclimate variability, it’s impact on

the below-ground community, and subsequent nitrogen loss present in the edge environment.

Researchers in ecology at UC Berkely are studying the impact of forest-clearcut edges on
biogeochemical processes which affect nitrogen retention within fragmented oldgrowth Douglas-fir
forests of the Pacific Northwest. The study site is at thg Wind River Expetimental Forest in.
southern Washington, where 9 transects have been established at edges separating oldgrowth forest
from 9 sepatate clearcuts. Three of the edges are south facing, meaning that the edge is
approximately east/west and the clearcut is south of the oldgrowth. Three additional edges are
north facing, two face west, and the final edge is east facing. Within each transect, measurements
have been made at 12 stations; one in the clearcut 120 meters from the edge, one at the edge, and
the rest within the oldgrowth at 15, 30, 45, 60, 75, 90, 120, 150, 180 and 240 meters from the edge.
The transects range in elevation from 500-700 meters, and are all within a 2 mile radius.
Measurements have been collected on mote than 100 variables in order to study edge effects on
temperatute and moisture by season, forest structure, litterfall by season, and nutrient availability in

soil. The ultimate goal of the study is to model how edges affect nutrient cycling and forest health,



but the immediate goal is to study edge effects exhibited in the individual variables. Quantitatively,
the major questions to be addressed are:

1. Is there an edge effect?

2. Does it change with the orientation of the edge?

3. How deep into the forest does it extend?

Previous edge effect studies have addressed the first two questions using a simple two-factor analysis
of variance (ANOVA) model, and have addressed the last question using multiple comparisons.
These studies have ignored the grouping of measurements into transects, treating each measurement
as an indepeﬁdent obsetvation. Ignoring this grouping of observations (into transects) doesn’t
necessarily affect the fit of a model, but it can lead to biased estimates of residual variance, and this
can cause significance tests to be inaccurate (Neter et al, 1996). In addition to fitting a regular two-
factor ANOVA model with distance and edge otientation (aspect ) as factors, the following
extensions to the ANOVA model will be described and compared to results from the two-factor
ANOVA model:
1. Three-factor ANOVA with factors for distance, aspect and transect within aspect. This
allows a separate mean for each transect.
2. Mixed effects model, in which the separate mean for each transect is treated as 2 random
effect. This allows for broader inference.
3. Polynomial regression in which distance is treated as a continuous variable. This gives

higher power and greater error degtees of freedom.

It will be shown that these extensions provide a better fit to the data and more reasonably estimate

the significance of distance, aspect, and the interaction between aspect and distance.



Snow Cover Data

One of the variables measured is percent snow cover » and it will be the primaty example for
demonstrating the different models described above. Because snow cover was measured as the
percentage of ground covered, it was transformed using the arcsin square root function, the
recommended vatiance-stabilizing transformation for percent data (Neter et al, 1996). A plot of the
untransformed data is shown in Figure 1. Note that the transects are grouped by aspect, with top
tow of plots showing edges with north aspects, the middle row shows south aspects, and the bottom
row shows east/west aspects. Snow cover insulates the ground and stabilizes temperatures in the
soil. Warmer daytime temperatures in the edge environment may cause reduced accumulations of
snow. This lack of groundcover insulation may have a negative impact on microbial populations in
the soil. Data from the clearcut station was excluded from this analysis because it is not relevant to
examining the edge effect within the oldgrowth. In addition, it often showed problems with non-

notmality and heterogeneity of variance, and its inclusion caused problems in more complex models.
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Figure 1. Plot of percent snow cover by transect. Note that that the transects are
Lronped by aspect, with top row of plots showing edges with north aspects, the middle row
Shows south aspects, and the bottom row shows east/ west aspects.



Methods of Analysis

Software

The software package R (http:/ [cran.t-project.org/) was used for all computations, and results were
vetified using SAS (http:/ [wrwrw.sas.com/).

Two-factor ANOVA model

A two-factor ANOVA model was fit to the transformed data. This model fits a separate profile by

aspect. For the £7h obsetvation taken at distance J from a transect with aspect 7, the model is:
Vi =H_ +O0,+7, +y, +&,,i=1.3j=1.3, k=1.11.

Where:

M... is the overall mean.
8, is the effect of aspect ;,
T, is the effect of distance 4,

7 1s the interaction between distarice and aspect,

and &, ~ N(@©,c?).

Such 2 model can be fit in R with the following code:
> anova.model <- lm(asin (sqrt (snow.cov/100)) ~ asp*factor(dist), data=snow)

Boxplots of residuals by transect (figute 2) show a setious problem with lack of fit,. Within each
| aspect, the replicate transects differ in mean snow cover (the transect effect). In this simple model
this variability associated with the transect effect is being absorbed by the residuals. This inflates
tesidual variance and results in 2 misleading ANOVA table (below) in which the interaction between

distance and aspect appears to be insignificant.



> anova (anova.model)

Analysis of Variance Table

Response: asin(sqrt(snow.cov/100))

Df Sum Sg Mean Sq F value Pr(>F)
asp 2 2.6503 1.3252 15.5532 2.923e-06 ***
factor(dist) 10 1.6428 0.1643 1.9282 0.05659
asp:factor(dist) 20 0.9654 0.0483 0.5666 0.92182
Residuals 66 5.6233 0.0852

Figure 3 further illustrates the lack of fit, showing the data by transect with the fitted profile as a

dashed line.
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Figures 2 and 3. Figure 2 (lof?) shows boxplots of residuals from two-factor ANOV A
model by transect. Figure 3 (right) shows the transformed data (circles) with fitted valyes
as a dashed lne.



Three-factor ANOVA model

One way this lack of fit can be cotrected for is by fitting a separate mean for each transect. For the

kzh obsetvation taken at distance ; from a transect with aspect 7, the model is:
Y =H_ +0,+p, +T, +y, +&y,=1..3,j=1...3, k=1...11.

Where:

M... 1s the overall mean.
0, is the effect of aspect 7,

Py 1s the effect of transect j nested within aspect i.

7, is the effect of distance 4,

7 1s the interaction between distance and aspect,
and &, ~N(0,67).
Such a model can be fit in R with the following code:

> anova.model2 <- lm(asin(sqrt(snow.cov/lOO)) ~ replicate %in% asp +

asp*factor(dist), data=snow)

Boxplots of residuals by transect from this model (figure 4) show that there is no longer 2 lack of fit

problem, and a plot showing the data with fitted values (figure 5) confirms this.
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Figures 4 and 5. Figure 4 (left) shows boxplots of residuals from three-factor ANOV A
model by transect. Figure 5 (right) shows the transformed data (circles) with fitted values
as a dashed line.

Diagnostic plots of this model ate shown in figute 6. The plot of residuals versus fitted values (and
the “scale-location” plot) show that the assumptions of constant variance has not been violated.
The normal g-q plot shows that the residuals roughly follow a normal distribution. One outlier is
indicated by this plot: observation 56, from the Om station of transect N58, Cook’s distance is a
measure of the change in fit (summed over all observations), when an observation is removed from
the model. This provides a good indication influential observations, The plot of Cook’s distance
shows that obsetvation 56 is influential, as ate observations 55 (240m station of transect S57) and 72
(75m station of transect S61). The typical cutoff value for Cook’s distance is 0.2 so none of these

observations were removed from the model.
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JSigure 6. Diagnostic plots from the 3-factor ANOV A model.
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The models described thus far assume uncorrelated residual error. This assumption can be

examined with an autocorrelation function (ACF) plot. An ACF plot shows the average cotrelation

of residuals within the same transect as a function of their separation. Sepatation is measuted in

terms of lags, so such a plot is intended for equally spaced data. The transect data is not equally

spaced so ACF plots are technically not approptiate, but they do give a reasonable picture of the

cortelation present in the data. An ACF plot of the residuals from the two-factor ANOVA is

shown in figure 7. 'This plot shows some negative correlation at 5, 6 and 9 lags, but this is more

indicative of lack of fit than autocorrelation.
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Figure 7. Auntocorrelation function (ACEF) plot of residuals from the two-factor
ANOVA model. The line shows an alpha=.05 confidence region for the null
hypothesis of no antocorrelation.

This model gives quite 2 different ANOVA table (below). It shows that the difference in means
between transects with the same aspect is highly significant (p<2.2e-16), as is the distance:aspect
interaction. In addition, the estimated residual standard deviation (6') drops from 0.2919 to 0.1346

with this model.

> anova (anova.model?2) ;

Analysis of Variance Table

Response: asin(sqrt(snow.cov/100))

Df Sum Sq Mean Sg F value Pr (>F)
asp 2 2.6503 1.3252 73.1853 < 2.2e-16 **+*
factor(dist) 10 1.6428 0.1643 9.0730 6.619e-09 **x
replicate:asp 6 4.5369 0.7561 41.7602 < 2.2e-16 **+*

asp:factor(dist) 20 0.9654 0.0483 2.6659 0.001799 =**
Regiduals 60 1.0864 0.0181



Mixed-effects models

The three-factor ANOVA model provides an adequate fit to the data, but is limited in that it only
models the specific sample of transects that were measured. If the transects measured can be
assumed to be a random sample from some larger population, we can model the transect effect as a
random effect. That is, we can model it as random vatiation around some population mean. This
allows us to make infetence about the population of forest edges our sample was drawn from, rather
than just those edges measured. In this case, we are not so concerned with making inference about
the transect means, so a mixed-effects model is not neccesaty. If there were no distance:aspect
interaction, we might be interested in the effect of aspect on mean snow cover, but because of the

significant interaction, this effect is of no interest. For the &#h observation taken at distance 7 from a

transect with aspect 7 the model is:
Vi =H. +0,+by, +7, +y, +&y,i=1..3,5=1..3, k=1..11.

Whete:

M... is the overall mean.

0, is the effect of aspect 7,

bg,; ~N(0,07}) is the random effect of transect 7 with aspect 7
T, is the effect of distance &,

7 is the interaction between distance and aspect,

and &, ~N(0,6%).

This is called a mixed-effects model because it includes both fixed effects (1,0, 7,y), which are

parameters associated with the entite population, and random effects (b), which are associated with

the individual transects measured. Such 2 model can be fit in R with the following code:

> mixed.int <- lme (asin(sqrt(snow.cov/100)) ~ asp*factor(dist), random=~1]|tran,

data=snow)

The command summary (mixed.int) gives the following output:

> summary (mixed.int)



Linear mixed-effects model fit by REML
Data: snow
AIC BIC logLik
51.18885 127.8268 9.405575

Random effects:

Formula: ~1 | tran
(Intercept) Residual

StdDev: 0.2590255 0.1345615

This shows that there is quite a bit of vatiability (6, =0.259) in the mean response between transects

of the same aspect.

As shown in a plot of fits versus distance by transect (figure 8), this model gives a fit virtually
identical to that of the three-factor ANOVA model. | The difference is that now we are not
estimating the individual transect effects (although the individual transect effects are predicted by this
model), but rather the variability of the transect effect (07 ) is estimated. This reduces the number
of parameters in the model and allows for broader inference.
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Jigure 8. Fit of mixced-gffects ANOV A model by transect.



An ANOVA table from this model gives F-statistics for distance and distance:aspect which are

identical to those from the three-factor ANOVA model.

> anova (mixed. int)

numDF denDF F-value p-value

(Intercept) 1 60 15.140309 0.0003
asp 2 6 1.752513 0.2515
factor (dist) 10 60 9.073008 <.0001
asp:factor (dist) 20 60 2.665940 0.0018

A plot of residuals versus distance by transect (figure 9) suggests that there remains some lack of fit
with the mixed ANOVA model. In particular this plot shows a trend in the residuals for many of
the transects. Transects N63, S57 and E52 stand out in this tespect. By adding a random slope to

our mixed-effects model this lack-of-fit problem can be resolved.
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Jignre 9. Residuals versus distance by transect for the ANOV.A model with random
intercept.

A mixed-effect ANOVA model with random intercept and slope effects by transect can be fit in R

with the following code:

> mixed.dist <- lme(asin(sqrt(snow.cov/lOO)) ~ asp*factor(dist),

random=~dist|tran, data=snow)

Models with different random effects can be compared using either the Akaike information ctitetion

(AIC) or the Bayesian information criterion (BIC). AIC and BIC are both based on the log-



likelihood (logLik) of a model (a measure of fit), and both add a penalty for additional terms,
because adding additional terms always results in a better fit. AIC and BIC differ in that BIC gives a
higher penalty to additional terms. The model that gives the lower AIC or BIC is favored. The
formulae for AIC and BIC are:
AIC=-2-logLik(model)+2p , and BIC=-2- logLik(model) + log(n)- p

The mixed-model with random intercept gave an AIC value of 51.1 and a BIC value of 127.8, while
the model with random slope and intercept gave values of 43.1 for AIC and 122.0 for BIC, so both
criteria favor the r.andom slope model. A notmal g-q plot of residuals from this model (figure 10)

shows that observation 56 is less of an outlier in this model.

For this (random slope and intercept mixed-ANOVA) model the issue of scope of inference is a
concern. The slope is changing between replicate transects of the same aspect, so in order to make

inference about forest edges other than those measured we must model the slope effect as random.

g 80
£, 5
= 2
° (o]
c
° 4
(!11
°
c
S o
»
—
<)
w 4
21
c
© , -
3 2 o
G o
T T T
-2 -1 0 1 2

Standardized residuals

Jigure 10. Normal probability Dlot of residuals from random slope model,

An ANOVA table from this model gives smaller p-values for all effects. This is because the residual
standard error (the denominator for the F-statistics) has dropped from 0.135 to 0.116 with the

addition of the random slope.



> anova{mixed.dist)

numDF denDF F-value p-value

(Intercept) 1 60 17.561937 0.0001
asp 2 6 3.708520 0.0894
factor(dist) 10 60 12.058182 <.0001
asp:factor (dist) 20 60 2.248428 0.0083

A plot of tesiduals versus distance by transect (figure 11) shows no trend in residuals.
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Jigure 11. Residuals versus distance by transect for the ANOV.A model with random
slope and intercept.



Polynomial Regression mixed-effects model.

The mixed effects model with random slope and intercept fits the data very well, but if we treat
distance as a continuous variable rather than as a factor, the data can be fit neatly as well with fewer
parameters. This is accomplished by modeling the distance effect, within each aspect, as an ##h
ordet polynomial. For the 42 observation taken at distance J/ from a transect with aspect , the

model is;

Vi =H_+0,+byy; +(By +cy,)-dist, + B, -dist? +...+ B, -dist" +&y,i=1..3,j=1..3,

k=1..11.

Where:

M... is the overall mean.

0, is the effect of aspect /,
bg,; ~N(0,0}) is the random intercept of transect ; with aspect ,
Cwy; ~N(0,07) is the random slope of transect j with aspect 4,

BB, are the coefficients for an n#h order polynomial describing the effect of distance for
aspect z,

and & ~N(0,67%).

Models with different fixed effects can also be compared with AIC and BIC, so long as the models
are fit using the method of maximum likelihood (ML). This method of fitting gives biased estimates
of vatiance so the restricted maximum likelihood (REML) method, which gives unbiased estimates
of vatiance, is preferred for most situations. A series of polynomial models was fit with orders
ranging from 1 to 10 (2 10* otder polynomial is equivalent to treating distance as a factor). In this

case AIC favored a 5" and BIC 2 4™ order polynomial, both of which were favored over the

ANOVA model.



The ANOVA table resulting from this model gives even smaller p-values for all effects. This is

ASSE/Adf -

F
2
O

because the F-statistics are calculated as F = Ayodf,, - 10 this case the change in error

sums of squates (A g ) with additional terms is approximately the same as for the mixed-ANOVA
model, but the change degrees of freedom (A ;)with additional terms is half of that for the mixed-

ANOVA model, so the F-statistics are approximately double.

> anova (mixed.poly)
Number of Observations: 99
Number of Groups: 9
numbDF denDF F-value p-value

(Intercept) 1 75 17.577020 0.0001
asp 2 6 3.737010 0.0883
poly(dist, 5) 5 75 24.022035 <.0001
asp:poly(dist, 5) 10 75 4.011533 0.0002

A plot of fits versus distance by transect (figure 12) shows a very close fit, and diagnostic plots

(figures 13 and 14) show normally distrubuted, uncorrelated residuals.
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Jigure 12. Fits from the 5% order polynomial mixed-effects model
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Jigures 13 and 14. Normal probability plot and ACF plot from the 5% order
polynomial mixed-gffects model

Discussion

The two-factor ANOVA model can be immediately discarded because, by ignoting the grouping of
data into transects, it fits the data pootly. The three-factor ANOVA model fits the data much better
but inference from this model is limited to the transects measured. The mixed-effects models allow
broader inference while fitting the data as well or better. By modeling distance as a 5™ order
polynomial the number of patameters fit drops by 15, which improves the power while fitting the
data quite well. Because it fits the data vety well and gives the highest powet, the mixed-effects
model in which distance is modeled by a 5" order polynomial, with a random slope and intercept for

each transect, is the preferred model for the snow cover data.

For the snow cover data, the effects associated with individual transects are small, so results of
significance tests for distance and aspect effects are about the same for all of the models examined.
For other variables, individual transect effects may be even greater, so the advantages of mixed-

effects models will be greater as well.

Previous studies have measured the depth of influence (DEI) using multiple comparison procedures.

This was done with the snow cover data using all of the models discussed, and with the exception of



the two-factor ANOVA, all gave roughly the same results. For vatiables with larger slope random
effects, the results of multiple compatison procedures could be quite different. This is because
random slope effects are incorporated when calculating the standard error of contrasts over distance
(e.g- the contrast between mean response at 240m and the mean response at some other distance).
However, multiple compatison procedures are not the ideal way to measure DEI. 1In all of the
vatiables examined thus far, the edge effects appeat to be occurring gradually over distance. If
enough transects were measured, the contrast standard efror would get small enough, and any
contrast, no matter how insignificant biologically, could become statistically significant. A better
way to measute DEL is with change-point methodology. In 2 change-point model we assume some
steady state (constant mean and/or variance) at the old-growth end of a transect, then find the point
(the change-point) beyond which some other model (a low-order polynomial function of distance)

fits the data better.
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