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Estimating population trend and process variation in the presence of

sampling error.

Abstract:

Time-series of population abundance estimates often are the only data
available fér evaluating the prospects for persistence ofa sbecies of concern.
’ With such data, it is common to test for a significant trend in the data or to
perform a population viability analysis (PVA) with diffusion approximation
methods. Sampling error and temporal correlation in the data, however, may
detrimentally affect these approaches. We develop a mixed-model method for
estimating trend, process variation, and sampling error from a single time-series.
The method is based on a discreté geometric model of density independent
growth coupled with a model of the sampling process. Transformation of the
data yields a conventional linear mixéd model, where the variance components
are functions of the process variation and sampling error. Simul'ation results
: show essentially unbiased estimators of trend process variation, and sampling
error over a range of process varlatlonlsamphng error combinations. A test for
significant trend that incorporates uncertainty in variance estimators and
temporal correlation due to sampling error in the data is developed. The test
limits type 1 error rate to nominal levels or smaller under a biologically realistic
null hypothesis. This mixed-model method is useful for PVA methods that

depend on accurate estimation of process variation.
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Estimating population trend and process variation in the presence of sampling

error.

Introduction

Conservation or management policies generally require assessment of a
population’s status. Unfortunately, these assessments often must be made-with
little data. Commonly, the moét éxtensive data available are time-series of
count-based data such as population abundance estimates, catch—pef—unit effort,
or samples of a portion of the life cycle, e.g. spawning redds, nesting aduits or
mother-cub pairs. Population status often is evaluated from time-éeries data by a
test for significant population trends (Gerrodette 1987, Pechmann et al. 1991,
Rieman and Myers 1997) or by a population viability analysis (PVA) (Dennis et
al. 1991, Boyce 1992, Morris et al. 2002, Morris and Doak 2002). ltis important
to realize, however, that the autocorrelation inhereﬁt in population dynamics may
invalidate these methods. In addition, sampling error may increase uncertainty in
results (Ludwig 1999, Maxell 1999).

itis rafely possibIeA to perform a complete census of a population.
Population density must be estimated from a sample resulting in an estimator
than contains error. In addition to error from only observing a sample of the
population, there also is error from not accurately counting individuals in the
chosen sampling units. This error is termed observation or measurement error
and is likely to increase variation to the data.  Error from the estimation process

and measurement error combine to form what we refer to in this paper as



sampling error. Note this is not the conventional definition of sampling error, i.e.
error due to random sampiing.

Common methods of testing for ecological trend ignore both sampling
error and correlated variation in populatioh density. Population density estimates
are time-series that have temporal autocorrelation. A recent text on population
monitoring by Thompson et al. (1998) suggested three methods for testing
populat-ion trends: standard regression, regression with a randomized or
bootstrapped significance test, and the non-parametric Mann-Kendall correlation
test. Maxell (1999) showed that type 2 error in a standard regression test for
trend increases with increased sampling error. We show that all three of the
above methods also have strongly elevated type 1 error rates dueto
autocorrelation in the data. Dennis et al. (1991) presented a test for significant
trend in the presence of process variation but Ludwig (1999) showed that
sampling error increases uncertaihty in the results. |

A count-based PVA using diffusion approximation (DA) methods is useful
for analyzing risk to a population. It has been noted, however, that DA methode
are vulnerable to sampling error (Ludwig 1999, Fieberg and Eliner 2000). Meir
and Fagan (2000) found that estimates of extinction risk are not sensitive to
moderate levels of sampling error except when the status of the population is
uncertain, precisely the situation when estimates of risk are most crucial.‘ Ina
PVA, estimates of the growth rate and process variation are used to calculate
metrics that describe a population’s future. Dennis et al. (1991) described

several of these metrics such as the mean time to extinction, distribution of



extinction times, probability of hitting a lower threshold (not necessarily
extinction) or the distribution of the population density in the future. These PVA
approaches depend on accurate estimates of process variation. Sampling error
adds to the variability in the data leading to inflated estimates of process |
variation.

Holmes (2001) described a method for estimating process variation and
sampling error from a single time-series of population estimates based on
runn'ing sums of the time-sefies. Holmes' method, however, has little theoretical
justification and may have limited applicability. A particularly worrison'le feature
of the Holmes method is that her estimators of process variation can be biased
high or low depending on the subjective choice of tne length of the running sum.
For longer running sums, the estimator for process variation is biased low and for
shorter running sums the estimator is biased high. ’ There is no guideline for
choosing the correct length of running sum. Therefore bias in the estimator is
unknown in actual applications.

AWe'present a new mixed-model method for estimating trend and variance
parameters from a single fime—series of popuAIation estimates. The data are used
to estimate process variation as well as sampling error in a standard linear model
framework. The mixed-model method allows essentially unbiased estimation of
trend, process variation, and sampling error from time-series of count data or
population densities without requiring additional information about sampling error.
These estimators are obtained by embedding a model of the sampling process

within a model of population growth@ Further, we develop a test procedure that



differentiates a true trend in growth from a random walk in the population and

limits type 1 error rates to nominal size or smaller.

Methods

The underlying change in population density over timé is modeled with a
stochastic discrete geometric growth model. - This model is used under an
~ assumption of density-independent growth for the population. The population
density at time (t+1) is assumed to be

N(t+1) = NOeP@E®D) 0
fort=1,2,..., T: where N({) represents the actual population density at time (f)
and exp(g) is the mean annual growth rate in population density. if this model is
used for abundance estimates, a discrete random Variable, as opposed to
density, a continuous random variable, then the pobulation abundance should be
large enough to justify the continuous approximation with the exponential model.
If g = 0, then the population is at equilibrium because exp(0) = 1. Natural
population growth is not constanf from year to year, so a multiplicative term, E(%),
is included to represent the process variation or deviation from theA long-term
trend at time (f). The random variables E(7), E(2), ... are assumed to be.
independent and identically distributed (iid) as lognormai(0, czp)'. Dennis et al.
(1991) used this model as an approximation of a more complicated demographic

population model undér the assumption 6f constant growth (g) and process



variation (g%) in the absence of density—dependence. The parameters g and 0%
are the main quantities of interest when using DA methods for PVA.

The ordinary least Squares estimator of the population trend, g, is
relatively straightforward to compute and is unbiased. Estimétion of the process
variation, however, is complicated because observed variability reflects sampling |
error as Weil as procesé variation. In the proposed model, observed data are
modeled by embedding the population growth model in (1) into é model that
includes sampling error. This is portrayed as

O(f) = N(t)Z(1), (2)
where O(f) is the observed estimate of population density at time () and Z(f)
represents error and bias that arises from sampling. The random variables Z(7),
Z(2), ... are assumed to be iid Iognorrhal(ps,ozs) and independent'of E(f). By
combining the population growth and sampling models, the observation at time
(t+1) is represented as |

O(t+1) = N(t)exp(g)E()Z(t+1). (3)

Define K(f) = In(N(?)), £() = In(E(#)), and o(t) = In(Z(t)). 1tis of note that

g~normal(0, 0%,) and @~normal(us , dzs)- Log transfbrmatioh of the observed

values yields:
Y(f) = In(O(t)) = K(t) + o(f), and 4
Y(t+1) = K(t) + g + () + @(t+1). (5).

The differences W(f) = Y(t+1) = Y(f) for t = 1,2,..,T-1 give estimates of the growth
rate at each individual time step plus error. The mixed model representation of

W(t) and W(t+1) are



W(t) = g + &(f) + @(t+1) — (1), and (6)

W(t+1) = g +&(t+1) + @(t+2) — @(t+1). (7)
The vector W is the series of the empiricél growth at each of the (7-1) one-step
time intérvals in the time-series of observations. The distribution of W is
multivariate-normal(1+.1g,X) with Z representing the (7-1)x(T-1) variance-
covariance matrix. The empirical growth observations in W can be'expressed as
a conventional linear mixed model;

W=Xg+v, | . (8)
where X is a column of ones with length (7-1) and v~(11-10, Z). Autocérrelation
~inthe time series due to exponential population growth is removed by the
differencing step, however, the entries of W are correlated due to Sampling errof.
As can be seen in equations 6 and 7, a single realization of the sampling error,
i.e. @(t+1), will be shared by two successive entries of W. This creates a one-
step covariance in W. Accordingly, the vafiance-co;/ériance matrix for W has a
banded Toeplitz (2) structure comprised of the variance of individual entries of W
on the main diagonal and the one-step covariance on the diagonals above and
below the main with zeroes elsewhere. Let o4 and o2 represent the variance and
one-step covariance of W respectively, then;

6, 6, 0 0 . . . O]
o, o, 0, 0
0 o0, 0, 0, 0

s - 0 0 o, . . . 1)
(T-Dx(T-1) . o . . . . .
0
. 0,
0 0 o, o
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The parameters in Z are functions of the process variation and sampling
error. The variance of an individu’al entry of Wis 01 = 20% + 6%. The one-step
covariance of the entries of W is 02 = -0%. It is now poSsibIé to estimate the
process variation and sampling error algebraically from the estimates of o1 and
oz in the covariance matrix. |

In simulations, maximum likelihood estimatofs of g, 0%, and 0%, were
strongly biased . Biased estimators are a common problem in variance
* component problems when using maximum likelihood. This bias is overcome by
using restricted maximum likelihood (REML) estimation (Searle et al. 1992)in
which a transformation of the data is used to eliminate the fixed efféct (g) before
estimating o4 and 2. The data transformation used is a one-step difference of
 the W series; ’

Z(t) = W(t+1) - W(1), | | (10)
where Z({) is the transformed data vector of length (T-2). This transformation can
be constructed as Z=UTW, where U:is a (T-1)x(T-2) contrast matrix with negative
1"s on the méin diagonal and 1’é on the diagonal below the main. The
parameters o4 and o2 are then estimated with maximum likelihood from the
transformed data. Because the covariance matrix of Z is related to that of W by
the equation © = U'ZU, the covariance matrix © also is a function of o4 and o2,
Initial estimates of a4 and o, are obtained by the method-of-moments. The

values &,and G, that minimize the negative log-likelihood function,

L(o1, 021 2) = %% (T-2)In(21T)7-F %In(o) + % Z'e'z, (11)
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are then the REML estimates of g4 and 02. The estimate, V, of the covariance

matrix, Z, is obtained by inserting &,and &, into equation (9).

" To estimate g, a generalized least squares estimator is used. Thisis an
extension of ordinary least squares, e.g. a straight average of the W's, and takes
advantage of non—zero.éovarianc;as in the data. The generalized least squares
estimator of the trend is

g = (XVX)"'XV'w. (12)
Kackar and Harville (1984) showed that generalized least squares estimators
with estimated weights are unbiased.

If  is known, then g = (X™ £'X)'X" £-'W and the variance of § is exactly

@ = Var(g) = (X"='X)". Because £ is unknown, the estimated covariance matrix
must be used as in (12), resulting in a biased estimator of Var(g), namely ® =
(X"V'X)". Two further adjustments presented in Kenward and Roger (1997) are
used that account for the bias in ® due to uncertainty in V and small sample

size. We will denote the adjusted estimator as ®,. The details of the calculation

of ®, are given in appendix A,

The correlation in W from sampling error affects the sampling distributibn
of the test statistic fro testing Ho: g = 0. This re_su_lts in a liberal significance test
for trend when using the t distribution with T-4 degrees of freedom. The quantity
T-4 is correct only if independence among the W entries is satisfied. The method
presented in Kenward and Roger (1997) to estimate degrees of freedom based

on the data is used to produce an adjusted sampling distribution. The details of
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the calculations for the adjusted degrees of freedom, denoted as m, are given in
appendix A. The test statistic for a non-zero growth rate is: t = § D, 1andis

approximately distributed as a t with m degrees of freedom. Thisis a standard
test for significance except it uses the modified estimates of Var(g) and modified
degrees of freedom. To construct confidence intervals, critical values from a t

distribution with m degrees of freedom are used. An approximate (1-a)100%

confidence interval is constructed as: § +Ya2m) ,/&) A-

Simulation Analysis

The behavior of the mixed-model procedure was explored with analysis of
simulated time-series data at nine process variation and sampling error
combinations. For each simulatiqn, 2000~ time-series of length 50 were
generated by first simulating the actual population growth with process variation
and then ‘observing’ the population densities with sampling error. Process
variation and sampling error were each set at three Ievelvs: L = 0.09, M = 0.0225,

~and S =0.0025. For each of the nine variation combihations, simulations with

and without a true underlying trend were analyzed. The simulations with no
trend, random walks, consisted of population growth that had random fluctuations
due to process variation only. Simulations with a true trend had a long-term

average decline in total population density of 5% per year.

Résults
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Table 1 displays the rates at which the null hypothesis was rejected for
methods presented in Thompson et al. (1998) as well as for the mixed-model
significance test with adjusted degrees of freedom for simulations of a random
walk population. The size of the test (rejection rate of true null hypothesis) is
over eight times the nominal size of 0.10 for the standard regression, regreséion
with randomization test, and the Kendall correlation test for trend. In contrast,
the mixed-model method has a type 1 error rate slightly less than a. The type 1
error rates of the mixed-model test with vadjusted degrees of freedom are
compared with the mixed-model test with unadjusted (VT-4) degrees of freedom in
Table 2. In all simulations, the Type 1 error rate of the adjusted test was less
than or not significantly larger than the nominal test size of a=0.10. In situations
wheré the sampling error was much larger than the process variation, the
adjusted test size could be considerably less thana. In cohtrast, the unadjusted
test consistently had type 1 error rates greater than’ a: In cases where the
adjusted test size was zero due to high sampling error, the unadjusted test size
was over double the nominal size of a = 0.10.

In simulations, the mixed-model method provided an unbiased estimator
of trend and estimators for variance components that are only slightly biased.
Figure 1 shows the distribution of trend estimates for simulations with a true
average decline of 5% per year. The variation in the estimates of trend depends |
mainly on the process variation. Sampling error appears to have little effect on
the variability of the trend estimate though it will affect the estimated variance of

the trend estimate due to increased variability in the data.
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Estimators of process variation and sampling error behaved similarly for
simulations with and without a true underlying trend therefore only the results
from simulations with an average 5% per year decline are gviven. Figure 2 shows
the distribution of process variation estimates. Overall, the estimator for process
variation shows very little bias. Occasionally estimates of process 'variation. are
extremely high in the presence of high sampling error, especially when the actual
process variation is low. The high process variation estimates can be seen in
Figure 2 as groups of_ extreme estimates for the LL, ML, SL, and SM simulations.
These high estimates correspond to sampling error estimates near or equal to
zero. Figure 3 gives the estimates of sampling error.

Observed power of the adjusted test to detect the decline also varied with
the relationship of process variation to Sampling errdr. }Table 3 gives the
observed power of the adjusted test compared .to the test presented in Dennis et
al (1991) in which Z is assumed to be the identity rﬁatrix. The power of the
adjusted mixed-model test was reduced at high levels of sampling error, most
strikingly at low levels of process variation where the difference between process
variation and sampling error is greatest. The Dennis test, however, generally

showed lower power than the adjusted mixed-model test.
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Discussion

The mixed-model method provides an unbiased estimator of trend and
nearly unbiased estimators of process variation and sampling error from a single
time-series with no additional information about sampling error. Generalized
least squares, an extension of ordinary least squares, permits estimating the
mean observed growth rate while incorporating information from the one time-
step correlation in the data due to sampling error. The precision of the trend
estimator is improved by including this temporal correlation into the modeling and
estimation procedure. As presented, the method cannot incorporate unequal
sampling intervals; the data therefore need to be gathered on uniform time
intervals with no missing observations. This method will be extended to
application to time-series with non-uniform sampling intervals in a future paper.

In some instances, the distribution ef process variation estimates for the
mixed-model method has an isolated group of estineates at extremely high |
values. This typically happens when the sampling.error is equal to or larger than
the process variation. | The estimates of process variation with extreme values
comprising these groups correspond directly to estimates of sampling error that
are close to or equal to zero. ltis unreasopable to have zero sampling error in
an actual application. Therefore a near-zero estimate of sampling error in
practice would serve as a wamning that the process variation estimate could be
biased high. |

Diffusion approximation methods will benefit by mere accurate estimation

of process variation in the presence of sampling error, but there are other
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assumptions inherent in DA methods that need to be addressed. The mixed-
model method helps rectify a major liability in DA methods by decreasing bias
and increasing precision in risk predictions through more accurate estimation of
process variation. However, DA methods assume there is no density
dependence in population growth, no extreme environmental perturbations, e.g.
catastrophes or bqnanzas, and that thev environmental variation is uncorrelated
(Morrié and Doak 2002). These factors aléo disrupt the mixed-model method in
the current form. In the near future, the mixed-model method will be extended to
include density dependence, correlated environmental variation, and exfemal
inférmation on sampling error. |

The Holmés method '(Holmes 2001) allows estimation of process variation
in thé presence of sampling error but it suffers from» limited applicability and bias
issues. In addition, it currently has no method for testing for a significant trend
and was described by Morris and Doak (2002) as bAest suited for analyzing
populations with short, well-known life spans consisting of adults that reproduce
only once.

Bias in the Holmes method depends on two subjective parémeters and the
unknown relationship of process variation to sampling error. For the Holmes
method, a running sum of length L of observation$ is used rather than the
individual observations. For example if L = 3, the first, second, and third
observations are added; then the second, third, and fourth observations are
added and so on. Fora time-series of observations of length T, this creates a

series of running sums of length (T — L +1). Denote the series of running sums
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as R. Once RlS calculated, the log population growth rate over time intervals of
length i = 1,2,...,imax is calculated by log(R(t+)/R(t)) with R(f) being the running
sum beginning at time ¢. The slope of a linear regression of the means and
variances of the log(R(t+/)/R(t)) values against i are the estimators of the growth
rate (g) and process variation (ozp) respectively. The regression estimator for
process variatidn is biased depending on the length of the running sum (L) and
the largest time interval used in the regression (imax) (Morris and Doak 2002).
The running sum serves to filter out sampling error from the observations,
however, it also filters out the process variation to ah unknown degree depending
of the length of the running sum (L). For small L, the estimates of process
variation are likely biased high, while for large L the estimates are likely biased
Iow There are no clear guidelines on how iong the running sum should be as it
depends on the unknown relatlonshlp between the process variation and
sampling error. The maximum time mterval for the regression (imax) can also |
affect the bias in the estimator although not as much as the length of the running
sum. In application, the appropriate L and imax are unknown Ieading toan
unknown bias in the estimates derived from the Holmes method.

Common methods for testing for significant trend are invalidated by
temporal correlations in the data inherent in population growth. Population
densities are directly related to previous population density through the growth of
the population. Therefore the deviation from the long-term growth at time ¢ will
be correlated with the deviation at time t+1. The covariance for successive

population densities is given in appendix B. This correlated error violates a
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fundamental assumption in standard regression techniques and changes the
distribution of the tesf statistic leading to type 1 error rates up to eight times the
nominal rate. Non-parametric tests such as the randomization significance test
for regression and Kendall's correlation procedure have apparent type 1 error
rates much higher than nominal if they are used to test fora trend in the
population growth. When used to test for é trend, the alternative hypothesis is
assumed to be that the population has a non-zero growth rate. The null
hypothesis, howevef, for these tests is that no relationship exists between
successive population observations, or in other words, that the observed
population density is an independent random variable at each time step.
Rejection of this null hypothesis only implies there is some relationship between
the observed population densities; precisely what one would expect due to the
nature of the population growth itself. Rejection of' the null hypothesis then does
not imply a trend in the observéd population densitiés as this is not the only
possible alternative hypothesis. A random walk population will tend td show a
significant result, i.e. rejection of the null hypothesis, for these tests even though
there is no actual long-term trend in the growth.

The mixed-model méthod incorporates sampling. error and temporal
correlation in the data due to sampling error into a testing framework that limits
type 1 error rates to less than or equal to the nominal rate. Further development
of the degrees of freedom approximation is needed for more consistent type 1
error rates for vér_iéus levels bf process variation and sampling error. Because it

is testing for a non-zero growth rate, the mixed-model method uses a more
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biologically realistic null hypothesis of a random walk in the popu.lation growth
over time. Rejection of this null implies that there is actually a non-zero
population growth rate. The mixed-model method partitions process variation
from sampling error in a single time-series allowing more precise estimates of the
trend as well as larger power to detect a true trend compared to the Dennis test
for a non-zero growth rate.

The mixed-model method fills a serious deficiency in variance estimation
and can be extended to address other problems inherent in analysis of count-
based data. It uses established linear model theory that allows the incorporétion
of differing variance/covariance struétures. Through the covariance structure the
method can be extended to include other features such as correlated process
variation, non-uniform sampling intervals, and density dependence in population
growth. Unfortunately, variance estimation from a single time-series is an
inherently difficult problem, especially in réal—life situations where long time-
series are rarely available and sampling error is usually large. Good statistical
methods can only go so far; accurate evaluations of a population’s risk will likely
necessitate more information than a single time-series Qf population estimatés
such as replicate time-series and direct measurements of demographic

parameters. .
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Appendix A

Calculations for adjusted Var(g) estimator (®,)

Partition the variance of g into two components;
&, =d+2A, where
®=X"V'X)"
is the conventional estimator for the variance of § ahd

f2 2 -
/\=2¢{Z > M,.,.(Q,.,.-r-",.chj)}q>
i=1 j=l

represents the amount to which the conventional estimator underestimates the

variance of §. Quantities in the underestimated portion are defined as

Q;= X'V g-‘-’—v-' —sl,—V"X and

c; o,

p =x"vH M vix
do;

- where -::—\L is an identity matrix of size T-1 and gy— isa '(T-1)x(T-1) matrix with
o, oF

ones on the diagonals above and below the main and zeros elsewhere.

M ={,}'is the variance-covariance matrix of 6,and &, which is derived from

the expected information matrix:

4}, = %{#ac{V" _5)’_v—x E\_l_) - trace(Za)Q g &JP,.&)P ; )} .

dc; 8c;
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Calculations for adjusted degrees of freedom (m)

This calculation is based on estimating the mean and variance of the test

statistic from the data and using these estimated moments to calculate the

degrees of freedom. Note these calculations are based on a F distribution, which

is the square of the test statistic given in the text. The estimated of the mean is

E=(-4,)" where
2 2 A
4, =Z > M trace(P,®P;P).

=l j=l

The estimated variance is given by

V=2 L +2c L where
(1-¢,B)" (1-¢;B)

d 1-d 3-d

A=ITaasd’ 2T 3eaied) O 3v20-d)
(1-d) 3+2(1-d) 3+2(1—d)

The quantity B is defined as
B= %(Al +64,) where

2 2 R N
A =2 Z M,.jtrace(P,.dD)traCe(de)).

=t =l

Then the degrees of freedom, m, is calculated as

m=4+—§— where
p—1

and d

_24,-54,
34,
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Appendix B.
Covariance between two successive population densities. This ignores sampling
error as this is assumed to be iid throughout the time-series.

| Following from equations (1) and (5) the log of population size at time tis
¢
K(t)= K(o) +tg + D &() (B1)
i=l

where K(0) is the initial populat‘ion density (or the first data point in the time-
series. Similarly, the population density at time t+1 is given by

K(t+1)= K() + (t+1)g + Ye() + s¢+D)  (B2)

i=l

Then the Cov[K(t),K(t+1)] = E[K(t)*K(t+1)] - EIK)IEIK(t+1)]

= E[z':a(i)] = Var[Z’: ()]

i=l i=1

= iVar[a(i)] =t0%

i=l
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Table 1

Observed size of significance tests for trend

Obsérved Size

Adjusted Mixed-Model Method 0.081
Standard Regression 0.829
Regression w/ Randomization 0.865
Kendall Correlation 0.814

Rate of Type 1 error (rejecting true null hypothesis) for mixed-model method and
various other common tests. Data generated by random walk population
observed with error. True g =0, 0% = 0.0225, o°s = 0.0225, 2000 repetitions, & =

0.10.
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Table 2

Type 1 error rates for significance tests with and without adjusted degrees of

freedom
Error
Adjusted df T-4 df
Structure
LL 0.076 0.120
LM 0.103 0.128
LS 0.104 0.122
ML 0.052 0.199
MM 0.081 0.134
MS 0.111 0.126
SL 0 0.238
SM 0.010 0.213
SsS 0.099 0.148

Observed type 1 error rate of the mixed-model method significance test with
adjusted degrees of freedom and a two-sided t-test with T-4 df. LL,LM, ..., SS
represent respectively the level of process variance and sampling variance used

in the simulation. True g =0, a=0.10.
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Table 3

Observed power to detect —0.05 trend

Error
Structure

LL
LM
LS
ML
MM
MS
SL
SM
SS

Mixed-Mode! Dennis test

0.248
0.296
0.348

0.493

0.654

0.720
0.388
0.812

1

0.039

0.203

0.326

0.014

0.286

0.680

0

0.402

Power of mixed model with adjusted degrees of freedom and an ordinary t-test to

detect trend. Results from 2000 simulations of length 50 with a —0.05 trend at

various levels of process variation/sampling error combinations.

29



Figuré 1. Distribution of trend estimates for 2000 simulations of length 50.
LL,LM,...,SS represent the process variation and sampling error levels

respectively. True trend = -0.05 is marked by the dashed line.

Figure 2. Estimates of process variation in standard deviations. True values
of the pérameters are given by an asterisk (*). LL,LM, ..., SS represent
respectively the level of process variance and sampling variance used in the

simulation.

Figure 3. Estimates of sampling error in standard deviations. True values of
the parameters are given by an asterisk (*). LL, LM, ..., SS represent
respectively the level of process variance and sampling variance used in the

simulation.
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Figure 1
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Figure 2

_Process Error Estimates
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Figure 3
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