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ABSTRACT

Multivariate analysis of variance (MANOVA) was used to analyze a microbial
data set containing variables quantifying biofilm structure. The data were obtained from
a laboratory experiment designed to evaluate differences between two strains of bacteria
in two different environments. A linear combination of response variables, an index, was
developed that significantly distinguished among the four combinations of strain and

flow.

INTRODUCTION

We live in a complex world, where few individuals, if any, live in isolation. For
the most part, we are surrounded by communities that exhibit a variety of
interconnections among living things. These connections are often numerous and
complicated. Statistical analyses of data collected on such systems, allows us to identify
patterns in nature and disentangle the delicate interrelationships found within these
systems.

In the “real world,” data collected from complex systems are inherently
multivariate in nature. Analyzing such data is a daunting task because much of the data
contain multiple measurements on the same individuals, thus measurements are not
independent of one another. Moreover, inter-correlations among measurements are

almost certain. Unfortunately, inter-correlations are often not addressed by researchers,
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most prefer to use the univariate statistical framework for data analysis when the
multivariate framework is often more appropriate for this kind of data. Univariate
approaches applied to multivariate data are common practice. However, conclusions
based on univariate analyses may be in error when differences among treatments are due
to chance alone. For example, when separate univariate analyses of variance are
performed on multiple response variables, these multiple univariate tests suffer from
increased family wise error rates. Thus the best approach, is to analyze multivariate data
using multivariate techniques.

Microbial biofilms are micro-organisms that are surrounded by polysaccharide
secretions, hence the name biofilms. Biofilms can be found coating a multitude of
surfaces from rocks in streambeds to catheter tubes, they readily adhere to any surface
covered by water (Costerton 2001). Their presence is at best innocuous and at worst can
cause infections or cause millions of dollars of damage to commercial products like
stainless steel piping. Biofilms require very little nutrients and oxygen, so they are able
to live in a variety of habitats, from slow moving to high velocity channels. Water not
only supplies required nutrients, oxygen and secondary colonizers, but also removes
waste and by-products from the biofilm.

Biofilm researchers use images captured by a digital camera on a high-powered
microscope to acquire basic information about biofilms. Data extracted from biofilm
images are lengthy, complex, arduously obtained and inherently multivariate. Such data
often contain multiple variables collected on a single biofilm image. In the investigation
discussed below, measurements were performed on each image to quantify the

morphological structure of the biofilm. Although much work has been performed on
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free-floating bacteria, few studies have examined sedentary bacteria until now.
Moreover, an attempt at quantifying morphological structure of sedentary bacteria via
image analysis is in its infancy. Data arising from such research fall into the realm of the
multivariate framework for statistical analysis.

The process of distinguishing biofilms based on morphological characteristics can
be difficult. Until recently, choosing characteristics that adequately describe the shape,
size and form of the biofilm has been mainly qualitative. Attempts to quantify biofilm
structure have mostly been limited to fractal dimension (Yang et a/. 2001). In an effort to
go beyond the limitations of qualitative descriptions and fractal dimension descriptions,
quantitative measures were obtained from image analysis of biofilms developed through
designed experiments (Lewandowski et al. 1999). These measures were derived to
capture the underlying processes as well as the structure of the biofilm.

Stoodley et.al. (2001; 1999b) and Yang et. al. (2001) have developed a more
comprehensive set of variables to quantify biofilm structure via image analysis. The
overall objective of this paper was to use a multivariate approach (MANOVA) to
evaluate microbial biofilm structure. The specific goals pertaining to the analysis of this
data set were three-fold. Firstly, because the data contain multiple variables describing
each image, we will use multivariate analysis of variance, MANOVA, to analyze the
data. Secondly, we will determine which of the variables were most important in
distinguishing among bacterial strains in different environments and retain those
variables for further ahalysis. Lastly, we will create an index that can potentially be used

to measure morphological differences among bacterial strains.
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MATERIALS AND METHODS

A designed experiment was conducted using two strains of Pseudomonus
areuganosa in two flow regimes (Stoodley et. al., 1999). Experimental flow chambers
were prepared such that each contained slides in the bottom of a tank. The water was
inoculated with the particular biofilm strain of interest and allowed to develop for a
period of time. At set time intervals, in situ digital images were acquired. Images were
analyzed, and data for 12 variables recorded. A detailed description of experimental
procedures may be found in Stoodley et. al. (1999).

The data set resulting from experiments performed on two strains of
Pseudomonus areuganosa contained information on 12 response variables and two
explanatory variables. Porosity, horizontal run length and vertical run length were three
response variables designed to capture the overall size of the biofilm. Porosity
(Lewandowski 2002) is the ratio of void area to total area, so it is the amount of the
surface that is not covered by biofilm, so small values indicate a large portion of the
image is covered by a biofilm. Horizontal run length measures the expected dimension
of a cell cluster in the horizontal direction while vertical run length measures the
expected dimension of a cell cluster in the vertical direction. Therefore both are
measures of cluster size. Other response variables, such as fractal dimension, textural
entropy, and homogeneity, captured the roughness of the biofilm boundary and the
randomness of the grayscale image. Finally, response variables such as average diffusion
distance, maximum diffusion distance, aspect ratio, contrast, correlation, energy and

autoregressive structure characterize both the size of the clusters and their general shape.
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The factors for this experiment were strain and flow velocity, each having two levels (i.e.
two strains and two flow rates).

The multivariate technique MANOVA is a generalization of analysis of variance
(ANOVA) that allows the researcher to analyze more than one response variable at a time
(Barker 1984; Bray 1985; Collins 1980). As an extension of ANOVA, MANOVA is
designed to distinguish among group means using several response variables rather than a
single response variable. Furthermore, this technique allows the researcher to look at the
relationship among all the variables simultaneously rather than looking at each in
isolation, while controlling for the intercorrelations among the response variables. The
advantage to using MANOVA is that the analyst looks at the multi-dimensional variable
space, trying to elucidate group differences in p-space that may not be apparent in each
space individually. Thus, MANOVA may be a more powerful test than doing separate
one-way ANOVA’s.

The assumptions (Bray 1985) needed for MANOVA parallel those needed for
ANOVA.

1. The units are randomly sampled from the population of interest

2. The observations are independent of one another

3. The response variables have a multivariate normal distribution within each group

4. The p groups have a common within-group population covariance matrix
The experimenters followed a spatial sampling protocol that provides credibility to
assumptions one and two. Assumptions three and four were evaluated during the data

exploration phase of the analysis. There were not enough observations to evaluate the
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multivariate normality assumption; therefore, we only checked the marginal normality of

each variable separately.

RESULTS

Univariate analyses (Table 1) were performed on each of the response variables to
determine if the factors or interaction terms were significant and to obtain residuals for
purposes of evaluating assumptions. Normality was assessed using the Anderson Darling
test, while non-constant variance was assessed using residual plots (Table 1). Three of
the variables, Porosity, Homogeneity, and Contrast conformed to the normality and
constant variance assumptions. However, Energy, TE and FD had non-constant variance
and ADD, MDD, HRL, VRL, Correlation and AR were both non-normal and had non-
constant variance. Transformations were performed in an effort to remedy violations of
the MANOVA assumptions. The variables ADD, MDD, HRL, VRL, AR and Energy
were log (base 10) transformed while TE was exponentiated to try and make them more
normal and less heteroscedastic. Normality tests and residual plots were again performed
on each of the transformed variables to assess violations of MANOVA assumptions.
Results indicate some variables still violated MANOVA assumptions (Table 2).
Correlation matrices were constructed to determine redundancies within the set of
response variables. Variables containing similar information were culled from the data
set.

Response variables were reduced from 12 to 6 based on extensive exploratory
analysis. The sets of variables, HRL and VRL, as well as MDD and ADD, contain very

similar information, thus one from each set (VRL and ADD) was eliminated. Further
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analysis revealed Homogeneity was proportional to contrast, so it was redundant and
therefore eliminated from the analysis. Energy and FD were highly correlated with TE
(-0.954 and 0.804, respectively) so they were also eliminated from the analysis.
Surprisingly, initial MANOVA analyses showed that Contrast was exactly a linear
combination of other responses; therefore, it was also removed from the analysis. The 6
remaining response variables were Porosity, logMDD, logHRL, 1ogAR, log(Corr-4) and
expTE. These variables were standardized and the MANOVA performed on the
standardized variables. There were two outliers in this data set. While both were real
observations, not data entry errors, they were eliminated from the data set for the
following reasons. When looking at Porosity values, we could see that the value for
observation 93 was high (0.995101).. This indicated that there was a high ratio of void
area to total area. In essence, there was no biofilm on the slide and so all of the
measurements were made on an empty slide. The values for this observation were
therefore extremely different from all of the other observations. This point was removed
from the analysis. Similarly, LogCorr had a very large outlier in the negative direction.
All of the correlation values were close to four, except observation 91 which had a very
small value (0.00047). This value indicated excessive noise in the image, so it was
eliminated from the analysis.

Multivariate analysis of variance was performed on the data using the reduced
data set. Response variables for the model were Porosity, logMDD, logHRL, logAR,
log(Corr-4) and expTE, while explanatory variables included strain, flow and the
interaction between strain and flow. Results from the overall MANQVA test showed

highly statistically significant flow and strain effects (Table 3; p-value < 0.003) and
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almost statistically significant interaction effects (Table 3; p-value = 0.06). A single
factor was then created coding for each of the four treatments (strain 1 flow 1 = treatment
1, strain 1 flow 2 = treatment 2, strain 2 flow 1 = treatment 3, strain 2 flow 2 = treatment
4). AMANOVA was again performed on the data using the six response variables and
the single treatment factor. The treatment effect was highly statistically significant
(Table 4; p-value < 0.0001).

The largest eigenvalue (1.9075, Table 5) and associated eigenvector accounted for
much of the separation among the treatments (Table 5, cumulative proportion 0.8925).
The first eigenvector was used to create Index1, a linear combination of the response

variables that discriminated among treatments (equation 1).

Index1 = 0.02606(Sporo)+0.12627(SLogHRL)+0.06915(SlogAR) -0.00247(SLogMDD)

-0.02952(Slog(Corr-4))-0.02372(SexpTE) )

An ANOVA was performed with Index1 as the response and strain, flow and the
interaction between the two as the explanatory variables. Results were statistically
significant for strain (Table 6, p-value = 0.012) and flow (Table 6, p-value < 0.0001), but
were not statistically significant for the interaction (Table 6, p-value = 0.558, Figure 1),
These results indicate that the interaction is not needed when trying to distinguish among
strains and flows using Index1, therefore it was not included in further analyses.

Index1 was simplified by converting the coefficients to whole numbers and

dropping SlogMDD because of its small coefficient. This simplification, called General
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index1 makes the relationships among the variables more apparent and easier to interpret

(equation 2).

General index1 = 3(Sporo)+13(SlogHRL)+7(SlogAR)-3(Slog(Corr-4))-3(SexpTE).  (2)

The General index1 was submitted to ANOVA to ensure it retained the ability to
distinguish among strains and flow regimes. Results for the general index were similar to
those for Index1 (Table 7). Both strain and flow were statistically significant (p-values of
0.0132 and < 0.0001, respectively). Again, the interaction between strain and flow was
not statistically significant (p-value = 0.543, Figure 2). The plot of the general index
(Figure 3) clearly illustrates the separation between the two flow regimes. Points in red
are from the turbulent flow, whereas points in black are from the laminar flow. The
separation between strains is not as apparent, however, the squares represent the wild
type strain, Pseudomonus areuganosa, while the circles represent the mutant type derived
from Pseudomonus areuganosa. Visually, there are more squares below the x-axis than
above.

Using the éeneral index, four points were chosen (Figure 3) to evaluate the
morphologies of the biofilms the index claimed were different. Biofilm images used for
data analysis are presented in figure 4. Morphologies among these four images are

distinct,

DISCUSSION
Using MANOVA techniques, an index was developed to distinguish turbulent

flows from laminar flows and wild type morphologies from mutant type morphologies. It
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was not obvious from univariate analyses that the biofilm morphologies for the two
strains were significantly different. This statistical significance was an important result
to the microbiologists. The index captured the size, shape and structural complexity of
the biofilm grown under controlled experimental conditions. The index is
mathematically straightforward lends itself to ease of use and interpretation. It is general
enough that for similar experimental scenarios it may be useful to distinguish among
bacterial strains and flow regimes. However, its use should be limited to similar
experimental scenarios. Future work with this index would include using it on a new data
set that contains the same variables used in this analysis, and evaluating its ability to
separate groups in the new data set. It is of great interest to determine whether the

coefficients for the index are repeatable.
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Table 1 — Results from univariate analyses and evaluation of MANOVA assumptions.

Variable Strain Flow Interaction | Normality | Variance
SPoro NS * NS NS Constant
SHomo NS *okok NS NS Constant
SCont NS il NS NS Constant
SEnergy NS NS NS eokk Constant
STE NS *ok NS okok Constant
SFD NS *kk NS * Constant
SADD NS ok NS ok Non-const
SMDD NS ook NS wokok Non-const
.SHRL NS *oksk NS ok Non-const
SVRL NS ok NS Fkk Non-const
Scorr NS NS NS ok Non-const
SAR Hokok ok ok NS Hk Non-const

Table 2 — Results from univariate analyses and evaluation of MANOVA assumptions,
during the second analysis.

Variable Strain Flow Interaction | Normality Variance
SPoro NS * NS NS Constant
SHomo NS kkk NS NS Constant
SCont NS kokk NS NS | Constant
LogEnergy NS NS NS ok Constant
explE NS *kk NS e Constant
LogFD NS *okok NS ke Constant
LogADD NS bk NS kokk Constant
LogMDD NS Aok ok NS NS Constant
LogHRL NS ok NS NS Constant
LogVRL NS Feeok NS NS Constant
Logcorr NS NS NS okok Non-constant
LogAR ok ok NS o Non-constant




Table 3 - MANOVA results for initial evaluation of response variables.
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MANOVA for flow s=1 m=20 n= 475

Criterion TestStatistic F DF P
Wilk's 0.36707 27.875 (6,97) 0.000
Lawley- 1.72424 27.875 6,97) 0.000
Hotelling

Pillai's 0.63293 27.875 (6,97) 0.000
Roy's 1.72424

MANOVA for strain s=1 m=20 n= 475

Criterion Test Statistic F DF P
Wilk's 0.81959 3.559 (6,97) 0.003
Lawley- 0.22013 3.559 (6,97) 0.003
Hotelling

Pillai's 0.18041 3.559 (6,97) 0.003
Roy's 0.22013

MANOVA for flow*strain s=1 m=20 n= 475

Criterion Test Statistic F DF P
Wilk's 0.88557 2.089 (6,97) 0.061
Lawley- 0.12921 2.089 (6,97) 0.061
Hotelling

Pillai's 0.11443 2.089 (6,97) 0.061
Roy's 0.12921

Table 4 - MANOVA results using reduced response variables and treatment as the

predictor variable.

MANOVA for treatment s=3 m=10 n= 475

Criterion Test Statistic F DF P
Wilk's 0.27897 8.710 (18,274) 0.000
Lawley- 2.13721 11.359 (18, 287) 0.000
Hotelling

Pillai's 0.84750 6.496 (18,297) 0.000
Roy's 1.90747




Table S - Results from eigen analysis for treatment.
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Eigenvalue 1.9075 0.2151 0.01460 | 0.00000 | 0.00000 | 0.00000
Proportion 0.8925 0.1007 0.00683 0.00000 | 0.00000 | 0.00000
Cumulative | 0.8925 0.9932 1.00000 1.00000 | 1.00000 1.00000
Eigenvector 1 2 3 4 5 6

SPoro 0.02606 -0.0170 0.1204 0.1052 0.0669 -0.1690
SLogMDD | -0.00247 | -0.1441 0.1102 -0.0700 -0.0040 -0.0067
SLogHRL 0.12627 0.1955 0.0619 0.1306 0.0245 -0.1534
SLogAR 0.06915 -0.0933 -0.0703 -0.0281 -0.0077 -0.0211
SLog(Cor -0.02952 0.0451 0.0448 -0.0383 0.0641 -0.2176
SexpTE -0.02372 0.0473 0.0864 0.0489 -0.0059 -0.3073

Table 6 — General linear model results using index 1 as the response and strain, flow and
the interaction as predictor variables.

General Linear Model: Index1 versus strain_1, flow

Factor

flow

Analysis of Variance for Indexl, using Adjusted SS for Tests

Source
strain_ 1
flow

strain 1*flow

Errorxr
Total

Type Levels Values
strain_1 fixed
fixed

212

212
DF Seq S8
1 0.18867
1 1.71533
1 0.00338
102 0.99996
105 2.90734

Adj ss Adj MS F

0.06351 0.06351 6.48
1.70875 1.70875 174.30
0.00338 0.00338 0.34
0.99996 0.00980

P
0.012
0.0600
0.558

Table 7 — General linear model results using general index 1 as the response and strain,
flow and the interaction as predictor variables.

General Linear Model: General Index1 versus strain_1, flow

Pactor Type Levels Values
strain 1 fixed 212
fiow fixed 212

Analysis of Variance for General, using Adjusted SS for Tests

Source
strain 1
flow

strain 1*flow

Error
Total

DF
1

1

1
102
105

Seq SS
2035.5
18596.5

39,8
10888.8
31560.6

Adj ss Adj MS F
687.0 687.0 6.44
18523.0 18523.0 173.51
39.8 39.8 0.37
10888.8 106.8

P
0.013
0.000
0.543




Figure 1 — Interaction plot for index 1.
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Figure 2 — Interaction plot for general index 1.
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Figure 3 — Plot of data observations using general index 1.
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Figure 4- Digital images of biofilms obtained from general index 1.
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