A Bayesian Approach to Hierarchical
Model Building

Albert E. Parker
Department of Mathematical Sciences
Montana State University

May 3, 2004

A writing project submitted in partial fulfillment
of the requirements for the degree

Master of Science in Statistics



APPROVAL

of a writing project submitted by

Albert E. Parker

This writing project has been read by the writing project director and has been
found to be satisfactory regarding content, English usage, format, citations,

bibliographic style, and consistency, and is ready for submission to the Statistics
Faculty.

: - ‘ -
a., /0, Fo ‘/ - m '-7(&
/ ) Jim\hobisomCox
Writing Project Director

Date



1 Introduction

‘The objective of this paper is to demonstrate the Bayesian approach to statistical inference, which
can be summed up in a word: posterior. This demonstration touches upon different Bayesian
probability models, how these models can be estimated from data, and how to infer something
about parameters of interest given a model and data. In section 2, I outline, in my opinion,
what differentiates the Bayesian approach from the non-Bayesian’s. In section 3, two simple
Bayesian models are introduced to motivate the power and flexibility of hierarchical Bayesian
models, which I cover in section 4. Section 5 is devoted to demonstrating methods which can be
used to approximate the posterior. Bayesian Mixture models are considered in section 6. All of
the data sots and analyzes performed in an attempt to elucidate the details of the methods were
from Gelman et al [4]. However, the R code which I wrote to implement these analyzes is my
own, and a hard copy of most of this code is in Appendix 8, which also contains a URL where
all of the code can be found.

2 What'’s under the hood when performing Bayesian inference?

Bayesian statistical conclusions about k parameters of interest, & € R*, are made in terms of
probability statements which are conditional on the observed value of ¥ € R*, the data {3, 4.
This probability is called the posterior density, written p(8]y). The posterior is found by using
the definition of conditional probability,

p(y,6)

p(fly) = 2@

Applying this definition once more yields Bayes Rule,

_ PO)p(yl6)

interpreted as the distribution of the parameters given the data. The sampling distribution or
likelihood p(y|9) is the probability model which one assumes yielded the data y actually observed.
The prior, p(6), is the density over the population of possible values for 8 based on the modeler’s
knowledge of #. The marginal density of y is p(y) = S p(y,8)do = S p(8)p(y|0)do.

Equation (1) is the engine driving the Bayesian perspective. This equation illuminates the
three main differences between the Bayesian perspective and the non-Bayesian or frequentist
perspective. First, from a Bayesian point of view, the parameter vector 8 is assumed to be
random. This is very different than the frequentist approach taught in many elementary statistics
classes, where the parameter is assumed to be a fixed, unknown quantity. Secondly, it can be
argued that it is the perceived arbitrariness of the prior distribution imposed upon 4 that truly
divides statisticians into two camps. Although hard-core Bayesians would maintain that all priors
ought to be built on knowledge about the parameters, there are Bayesians who enjoy choosing
conjugate priors, which yield posteriors of & known parametric type, explained below. On the
other hand, non-Bayesians may agree (grudgingly) only with the use of non-informative priors.
Thirdly, the interpretation of even markedly similar numerical resulis are different depending on
the perspective of the statistician.

A conjugate prior is one where, roughly speaking, the posterior distribution is of the same dis-
tribution type or class as the distribution type of the prior. For example, if p(yl0) is Binomial(n,8),
then p(d) = Beta(c, ) is a conjugate prior since p(8y) is Beta(y + a,n —y -+ £) (13] p. 298). A
critic might point out that such a choice of prior is due to convenience (i.e. to get an analytic
expression of the posterior that is well behaved), not necessarily due to a priori knowledge of the
data.



When the modeler has little prior knowledge about &, then it is prudent to use a flat or
roninformative distribution for p(#). For example, for values of § € [0,4], a noninformative prior
is p(f) = i. Using non-informative priors can yield parameter estimates that are similar to the
estimates obtained by non-Bayesian methods. For example, in linear regression, the vector of

parameters is § = ( g ), where # € R*! is a vector of regression coefficients and 02 > (.

One usually assumes that the sampling distribution is p(ylB,0%) = N(XB,01,) where X is a
n X {k—1) matrix of constants, and for simplicity I assume that rank(X) = k— 1. If one chooses a
non-informative prior for 8, then the posterior for 3 is multivariate normal, p{(Bly) = N (ﬁ' yo21,),
where 3 is the Best Linear Unbiased Estimator of 2 ([5] p. 85). The 95%posterior interval
estimate for a particular regression coefficient Bi,

B+ ta s 1 SE(B), (2)

is the same interval estimate obtained by a frequentist’s 95% confidence interval for B;.

"The last example illustrates the point made earlier that, even with the same interval estimate
of a parameter, the Bayesian interpretation of the interval is different than the frequentist’s. A
Bayesian would say that (2) contains the parameter f; with probability .95. The frequentist
would say that once §; is computed from data and substituted into (2), then one is 95% confident
that f; is in the interval. No statements about probability are appropriate, since the frequentist
maintains that the parameter is either in the interval or it is not, and the level of confidence now
measures the uncertainty of whether §; is in the interval. It can be argued that the introduction
of this new measure of uncertainty is weird. In some sense, since a probability is already a
measure of uncertainty, the Bayesian notion of using a probability to measure the uncertainty of
whether the interval contains the parameter is more satisfactory.

A satisfactory way to obtain a prior distribution that is driven by the data is to update a
prior by the posterior. Let p(fy1) be the posterior given that a the data 3 was observed, and
suppose that a new data vector ys is observed, such that y1,y2 ~ p(y|6). The posterior P(Olya) is
found by setting p(6) := p(8y;). This methodology can yield posteriors that are not of a known
parametric family, and so numerical techniques are necessary to estimate these posteriors. In
this paper, some of these numerical techniques are illustrated.

3 Simple Bayesian Models

To illustrate how one might use the posterior distribution for inference, consider a study per-
formed by the Educational Testing Service to analyze the effects of special coaching programs
on SAT test scores ({4] p. 143-4). Assuming that we have a simple random sample of 240 pairs,
{(zi1, 2:2)}, of SAT scores, the score z; recorded on individual ¢ before being coached, and the
score zj recorded after being coached. Let y; = Zj2 — zjy, and suppose that the mean of the
differences of these two scores is § = 7.87, that o = 64.5 is known, and that the population mean
@ is the parameter of interest. Gelman et al. ([4] p. 42-5) show that if o2 is known, so that
p(y|8) = N(8,0%), and the prior p(8) = Ny, %) with g and 72 known, then the posterior is

et IR
p(ﬂly) =N (Tl aﬂ LI n .
FtaE atz

L]

The term ;]7 is called the prior precision since 72 is the variance of the prior, which, if large,
implies that we have little knowledge of §. The term %y is called the data precision. As 7 — 03,
then the prior precision goes to zero, essentially giving a noninformative prior for . The posterior
in this instance simplifies to ’

p(Oty) = N(g,0%/n)
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([4] p. 45 and 67). This is precisely the distribution

quentist’s point of view. In the present case, we have that p(8ly)
95% posterior distribution for @ is (—0.29,16.04),
fidence interval for 8. To illustrate how one can
i5 not of a known parametric form, I estimate thi

N(7.87,17.35). The corresponding histogram is in Figure 1(a).
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used for inference about ¢ from the fre-
= N(7.87,17.35). Thus, a
which agrees with the frequentist’s 95% con-
estimate the posterior when the distribution
$ normal posterior by drawing 100 times from

Figure 1: (a) A histogram of 100 draws from N(7.87,17.35),
arbitrary posterior distribution. (b) Boxplots of 100 draws fro
estimates for the effects of the coaching programs at eight sch
scores. Note that it is difficuit distinguish the effects between

which generated these graphs is in Appendix 8.1.

This example can be extended to illystr
differences in means of multiple populatioc
programs were at eight schools, with school averages given in t

ns as in an ANQVA.

School | 2 | "7 [ s2/n;
A 112839 14.9
B 21794 | 102
C 3|-275| 16.3
D 4 682 [ 11
E 51-064( 94
F 6| 63 | 114
G 711801 [ 104
H |8[1216] 176

illustrating how to estimate an
m separate independent normal
ools (A through H) on SAT test
any of the schools. The R code

ate how one can use a Bayesian approach o consider
Now suppose that the coaching
he following table [6].

Table 1: Average SAT scores from & different schools. Reproduced from [4], p. 143.
Following ([4] p. 142), suppose that

Yii|0; ~ N(6;,02)
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where y;; is the j* observation from the it* school, #; is the mean effect of school 4, and o? is
the known variance of school i. Assuming a normal prior for each 65, so that 8; ~ N(u;, o? /),
then, as pointed out ahove, p{0ily) = N(§i.,02/n;). One can approximate the posterior interval

estimates for each 8; by assuming that o2 [n; = s2 /n; from Table 1, and then randomly drawing

T
samples from p(f;ly). The resulting posterior interval estimates, constructed from 100 draws
from each normal distribution, are depicted graphically in the boxplots in Figure 1(b). We sce
that the school effects are not statistically distinguishable due to the large variability of each

Bly.

4 Hierarchical Models

In the example involving SAT Scores, we assumed that we knew y and 7, the parameters of the
prior distribution. We now present a framework which can be used to consider these as random,
called a Bayesian hierarchical model. In g hierarchical model, the distribution of the parameters
¢ is dependent on another set of parameters, ¢ € R, so that the prior is now given as 2(8)¢).
This requires a distribution, (@), called a hyperprior, to be specified for ¢. This yields the joint
posterior distribution, as in (1),

p(8, ¢)p(yi8, ¢)
»y)
P{d)p(8|6)n(y|8, $)
p(y)
p(®)p(0l9)p(y16)
p(¥)

p(0,dly) =

where the last equality follows if we assume that the data y depends on ¢ only through 6. Not
surprisingly, it can be difficult to get an analytic expression for p(4, #) = p(¢)p(68l¢). To deal
with this issue, the factorization

P8, ¢ly} = p(#ly)p(0]¢, ) (3)

of the posterior is useful, which follows from the definition of conditional probability. This shows
that if one can estimate p(¢ly) and p(8lé, y) from data ¥, then one can use numerical simulations
to estimate the posterior by the following algorithm.,

Algorithm 1 (Basic Simulation of a posterior distribution) (/4] p. 129)

1. Draw vector of hyperparameters $:i € R from p(Sly). Ift is large, then it is recommended
to perform this siep via one of the methods introduced in section 4.

2. Draw a vector of parameters 0; € R* from p(0)ds, ).

3. Perform steps 1-2 N times. The posierior is approzimated by the distribution of {(6:, 1) }Y.,.

To illustrate these ideas, I applied a normal hierarchical model to the SAT test score data as
did Gelman et al. in [4], p.144-148. Let

¥:-, the mean of the sample data for school ¢, be the estimated coaching effect of the
special coaching program at school 4.

o? be the corresponding sample variance for school 1, which we assume is known.
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8; be the actual coaching effect in school ¢, which has known variance o2 so that the
sampling distribution is p(g;.|6;, o) = N(8;, o?)

¢ and 7 be hyper-parameters, so that the prior is given by

Oslp, T ~ N(p,7°)

A flat, noninformative prior density is assumed for the hyperprior, p{u1,7) 1. By (3), the
posterior can be factored as

pO,mtly) = plrly)pulr, v)pB)u, 7, y).

This last form is desirable since each of the three factors on the right hand side have analytic
expressions given our hierarchical model (see [4], equations 5.17, 5.20 and 5.21). In this case,

¢= ( f: ) Step 1 of Algorithm 1 is performed by drawing 7 from p(r|y), then drawing g from

plelr,y), and then drawing @ from p(8lp, 7,y). 1 wrote R code which applied Algorithm 1 to
simulate the joint posterior (see Appendix 8.1). Observe that § € R in this example. Figure 2
is an attempt to give a graphical display of this simulation of the Joint posterior over this eight
dimensional space.
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Figure 2: Posterior distribution p(;, 1, Tly) for the SAT scores for § — 1,...,8 schools. This
suggests that the school effects are more similar than predicted by modelling 8;ly with separate
normals (Figure 1(b)).

In Figure 3(a), I have shown a simulation of the marginal posterior density p(7[y). From this
density, we see that values of 7 near zero are most probable, p(r > 10}y) < .5 and p(r > 25)y) = 0.
The conditional posterior means E(8y]r,y) (for each of the eight schools) as a function of +
is shown in Figure 3(b). Comparing to 3(a), we see that for most of the likely values of 7,
the estimated effects are close together, as we noticed in Figure 1{a). As 7 becomes larger,
corresponding to more variability among the schools, the estimates become more like the means
shown in Figure 1(b) ([4] p.145-6) Thus, the Bayesian hierarchical model explains the analysis
when we pooled all of the data together (Figure 1(a)), as well as the ANOVA-type analysis
(Figure 1(b)).



P(TAU[Y) for SAT scores E{THETA_{[TAV,Y)

0.003
L

posterior danalty
0.002
.
Estimated Traatmat Etects
16
L

0001
I

Figure 3: (a) The marginal posterior density function p(rly). (b) The conditional posterior mean
E(8;|r,y) as a function of 7. .

5 Simulating Complex Hierarchical Models

If the posterior density is complicated or if there are many parameters of interest (that is,
if k£ and ¢ are large), then marginal posteriors for individual pbarameters can be difficult to
obtain numerically using Algorithm 1. One approach to deal with such complicated models js
to find the mode of the posterior, then to construct an approximation to the posterior about
this mode. I present the method of conditional mazimization or step-wise ascent to find the
mode of the posterior, and also expectation mazimizetion, which is used to find the mode of a

upon this approximation. 1 also used the Gibbs sampling approach to determining posterior
approximations. Gibbs sampling is an example of a general class of Markow chain technigues (7).

These procedures can be demonstrated by applying the hierarchical normal model examined
in the last section to the blood coagulation times, ¥ij, of 24 animals randomly assigned to four
different diets (i ¢ {1,2,3,4}) {2).

Diet ¢ Yi

1 62 60 63 59

2 63 6771 64 65 66

3 68 66 71 67 68 68

4 56 62 60 61 63 64 63 59

Table 2: Blood coagulation times in seconds for blood drawn from 24 animals randomly assigned
to 4 diets. Reproduced from [4], p. 284,
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0 is the actual coagulation time for animals on diet j, with Jerews- variance o2, so
that
Yijlly,0 ~ N(Bj!a2)

15 is the number of animals on diet i

¢ and 7 are hyper-parameters:
ile, T ~ Ny, 7%)
At this point, we deviate from the approach used with the ETS data, and assume the prior
(i, logo,logr) o 7
and so the following factorization of the posterior is useful:

p(0, p,loga,logrly) o p(8, p,log o, log 7)p(ylf, 1, log o, log T)
= p(u,log o, log T)p(8 12, log o, log T)p(yl, 1, log o, log )
= p(p,logo,log 7)p(0)1t, log 7)p(y|6, log a)

where the last equality holds since 8 is independent of 62, and x and 7 affect y through # and
log o. Therefore

4 4 nj.
2(6,ly) = p(0, 1. log o, log 7ly) ox [T Na(6itps, ) [ [ [T Natwss16;, 0
i=1 F=1i=1

([4] p. 288) since these are the densities assumed by the model outline above. I use the notation
Ng(-,-) to stress that I am using the explicit normal densities in the equation.

Starting at a crude initial parameter estimate, conditional maximization (step-wise ascent)
finds the mode of a given joint posterior distribution p(, ¢) by iteratively maximizing p{g, &) over
each individual component of (6, ¢) while leaving the other components fixed at their previous
values. This process is repeated until some convergence criterion is met, (such as the gradient
being close to zero).

I wrote R code (see Appendix 8.2) which implemented conditional maximization on the nor-
mal hierarchical model for the blood coagulation time data. Using this cods, (6, 1, log o, log 7ly),
converges to a mode of p(d, u, logo, log rly) after 8 iterations:

crude 1st 2nd 7th 8th
thetal 61.000000 61.281563 61.290783 ... 61.292425 61,292496
theta2  66.000000 65.870824 65.867621 .., 65.866975 65.866975
theta3  68.000000 67.741648_ 67.734547 ' 67.733177 67.733176
thetad 61.000000 61.147708 61.152770 61.153673 61,153674
mu 64.000000 64.010433 64.011430 64.011563 64.011563
sigma 2.200768 2.169795 2.170377 2.170487 2.170487
tau 3.559026 3.317881 3.310635 3.309280 3.309290
log(jp) -61.603540 -61.419440 -61.419319 ,,. -61.419316 -61.419316

It is prudent to mention at this point that when it is difficult to maximize the posterior
p(0, ¢ly) directly, or if we are only interested in simulating p(Bly) for which it is difficult to find a
mode, then one might consider the expectation maximization method. Expectation maximization
finds the mode of p(8]y) by the following algorithm.

7



Algorithm 2 (Expectation Maximization} [4] p. 278
1. Start with a crude parameter estimate §°.

2. E-step: Integrate out ¢ by computing
E(log (6, 6ly)) = f log (p(6, #1y)) p(816", 4)d.

J. M-step: Let 0! be the mazimizer of Ei(log p(8, dly)

Once the posterior mode is found, a multivariate normal or multivariate ¢ approximation is fit
to p(¢#} at the posterior mode. The scale matrix for the multivariate £ is the munerically computed
Hessian (via finite differences) of the marginal posterior density at the mode. To simulate the pOs-
 terior density p(8, ¢ly), first draw ¢ from the ¢ approximation for p(¢), then draw @ from 2(61).
For example, in the blood coagulation times example, we fit a multivariate 4 approximation for
p(u, log o,log 7) at the marginal posterior mode found by Conditional Maximization, given in the
R output above. Tbo simulate the posterior density p(8, 1,log o, log T|y), first draw (¢, log o, log )
from the ¢4 approximation for p(u, logo,log 1), then draw 8 from p(8lu,log o, log 7), which, as we
have already seen, is simply [T;_, Na(8;,72) ([4] p. 335-337).

Let ¢ be the vector of all parameters in which we are interested, so that ¢ = (6, ¢). When
simulating an approximation to p(¥ly), such as with a multivariate normal or multivariate ¢, one
can improve upon this approximation by importence resampling.

Algorithm 3 (Importance Resampling) f4] p. 312
1. Draw L times from the distribution qa.

2. Draw K < L times, without replacement, Jrom {1, 9L}, where the probability of drawing
¥t is proportional to the resampling weight p_(:;{i';{?ﬂ-

The last, and most complex algorithm which I introduce here is a Markov chain algorithm,
called Gibbs sampling. If one divides up the parameter vector § € R* into d subvectors, § =
(01, ..., 84}, then this method cycles through the subvectors {6:}L.,, drawing 6; from p(0;[{6;}45).
These d draws are performed in each iteration of the Gibbs sampling algorithm.

To monitor convergence of the Gibbs sampler, I consider the estimated potential scale reduc-

tion \/}72, given in [4] p. 332. For values of \/ R|9j close to 1, we conclude that 8; has converged.
One must require that 1,/3]9_.,- # 1 for all § before concluding that the full vector & has converged.
In an attempt to put together the concepts introduced in this section, I implemented the

following algorithm in R to simulate the posterior distribution given the hierarchical model for
the blood coagulation times (see Appendix 8.3).

1. Performing Conditional Maximization found a posterior mode at

& 61.3
6o 65.9
6 | | 677
8, | | 612
i 2.17
T 3.31

2. A multivariate {4 density is used to approximate p(8, i1,log o, log 7) about this mode.

8
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3. L = 1000 draws are taken from the t4 approximation.

4. The initial values for X = 10 Gibbs sequences are obtained via importance resampling,
with resampling weight equal to p(8, 1, log 5, log 7]y)

9. Run the Gibbs Sampler for A = 100 lterations, using the initial values of 4, o, 7 found in
step 4. These steps, as well as verification of the claims as to the form of the distributions,
can be found in {[4] p. 286, 336):

(a) For each 7, draw 0; from p(6;|p, o, T, %), which is normal.
(b) Draw o2 from p(c2[8, 1, 7, ), an inverse-y?2.

(¢) Draw p from (|6, 0,7, %), which is normal.

(d) Draw 72 from p(r2|6, 4, ¢, ), which is inverse-y?,

The following table shows the summary of posterior inference for the individual parameters
from the second halves of the Gibbs sequences (the responsible R code is in Appendix 8.3).

Quantiles
2.5 25 50 75 97.5  sqrt(R)

thetal 58.85 60.37 61.26 61.98 63.64 1.0041
theta? 63.77 65.24 65.87 66.59 67.97 1.0085
thetad 65.91 67.18 67.81 68.57 69.68 1.0030
thetad 59,18 60.42 61.11 61.67 62.78 1.0065
mu 55.88 62.08 63.90 65.83 73.17 0.9986
sigma 1.81 2.15 2.40 2.656 3.54 1.0050
tao 2.11 3.69 5.50 8.34 26.77 1.0186

log(jp) -95.31  -62.95 -62.19 -64.56 -74.30

The last column in the table shows the potential scale reduction for each parameter. Values
“near” 1 indicate that convergence for that parameter has occurred. In practice, values less than
1.2 are acceptable (4] p. 332).

6 Mixture Models

Suppose that one wishes to model ¥ € %" as a mixture of M densities or mizture components,
{p(yl8;)},. A (finite} mixture mode] is one in which the sampling distribution for yis

M
P18, 2) =" Mp(yl6;),

j=1

where A; is the proportion of the population from mixture component j. Thus, ;A7 = 1. This
requirement allows the vector X € RM to be interpreted as a discrete prior distribution on 4,
P05} = X;.

A mixture can be used to mode] data drawn from A populations. Introducing another
parameter, will make this use clear. Define the random indicator variable Gs by

G = 1 if the i** observation was from the 7 population
77 1 0 otherwise ’



Then _
(1, €10, ) = T TIE (\ip(aulds))% "
with exactly one (;; = 1 for each { {[4] p. 421).

One can use the methods introduced in section 5 to perform inference on the parameters of
interest, & € R®*. To illustrate this, I verified the analysis of Gelman et al. ([4] p. 426-438) on
the thirty log response times for 11 schizophrenics and 6 non-schizophrenic individuals [1]. The
basis for this study is the following quote:

Psychology Theory from the last half century and before suggests a model in which
schizophrenics suffer from an attention deficit on some trials, as well as general motor
retardation; both aspects lead to relatively slower responses for the schizophrenics,
with motor retardation affecting all trials and attentional deficiency only
some [4] p. 426.

Observe that a mixture model seems appropriate since we are interested in modelling data
from two populations, schizophrenics and non-schizophrenics. The parameters for the mixture
model are as follows:

¥i; is the i log response for individual j
§; is an indicator variable for individual J: 1 if schizophrenic, 0 otherwise
Gij is an indicator variable: 1 if y;; was affected by an attention deficit, 0 otherwise

a; is the average log response time for individual 7. For schizophrenics (7 =12,..,17),
a; is the average log response time when there is no delay caused by an attention
deficit.

7 18 the log delay caused by an attention deficit. That is, the average log response
time is p + 7 when affected by an attention deficit.

P

crf, is the common variance for aj + 75
# is the mean of o for j = 1,..., 11

B is the log delay caused by general motor reflex retardation, so the mean of a; for
F=12,..,17 is p+ BS;

o2 is the common variance for i+ BS;
A, the mixture component, is the proportion of schizophrenic responses that are
delayed due to an attention deficit

Let ¢ = (62,8, A, 1, 1, o). A uniform, noninformative prior is assigned to ¢ such that ¢, 8, T, oy >
0 and A € [.001,.999). Now the-mixture model can be stated as:
Yisloy, G~ N(j +7¢;5,00)
%lGs ¢~ N(u+ BS;,02)
(ijlqb o Bern(/\Sj)
I proceeded with the model analysis as I did in section 5. The location of the R code which

mmplemented these analyzes is given in Appendix 8.4. Since the code was extensive, I broke out
the R code into several modules, which correspond to the steps below .

1. Obtain “crude estimates” of the parameters (@, ¢) as given in ({4] p. 428-9), then divide .
each parameter by a x? random variable in an attempt to spread the points out over the {
parameter space so that we find all major modes.

10



2. Expectation maximization, starting from the values found in step 1., finds three modes
of p(a, ¢ly) after 100 iterations, a major mode and two minor modes on the edge of the
parameter space (R code is schiz.ecm.r).

3. Fit & £4 approximation at the major mode found in step 2 (R code is schiz.t4.r)
-4. Draw I = 100 points from the #, approximation.

5. The initial values for K = 10 Gibbs sequences are obtained via importance resampling,
with resampling weight equal to p(e, 4ly).

6. Perform Gibbs Sampler for M = 200 iterations, using the initial values of o, ¢ found in
step 5 (R code is schiz.gibbs.r). '

The result of this (extensive, slow) simulation is that, under this model, there is strong
evidence that the average reaction times are slower for schizophrenics (due to general motor
retardation) since a 95% posterior interval for ef is

[1.18,1.62].

The response delay due to attention deficiency is infrequent, since the mixture component A has
a 95% posterior interval
[.07,.18].

However, a 95% posterior interval for e” is
[2.1,2.61],

which indicates that although infrequent, the delay is significantly larger than 0.

7 Conclusion

I performed the analyses summarized here in the Fall of 2000, with Jim Robison-Cox acting as
mentor and stat-sage. I am very appreciative that Jim took the time to work with me throughout
that semester, with no other reward than getting to look at my mug every week for an hour or
two. I had zero statistical training at that time, and so the Bayesian point of view did not seem
threatening or different to me. I had nothing to compare it to. In the face of formal training as
a statistician, I have outlined my renewed perspective in “What’s under the hood?”. The great
advantage of the Bayesian approach, in my opinion, is the ability to perform inference using (a
sequence of) marginal posteriors, which have no need to be of a particular family, due to fast
computers, and numerical techniques such as the ones that I have outlined here.

In conclusion, I have attempted to outline, with a very thick pencil, the Bayesian approach
to data analysis, and how it differs from the conventional, frequentist approach. The Bayesian
perspective depends on probability statements made from a posterior distribution, or a collection
of marginal posterior distributions. If these Pposterior distributions are ugly (complex), or are
defined over a large parameter space, then I have outlined some approaches to deal with the
computational complexities. I have analyzed three separate data sets in an attempt to elucidate
the details of these methods, and my analyses replicate the analyses made by Gelman et al.
However, I developed all of the R code used to implement these analyses.
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8 APPENDIX: R Code

8.1 Hierarchical Model Construction and Analysis

# SAT scores from Rubin (1981) and in Gelam et al (2000), Table 5.2. p 143.

# All page numbers and equation ref’s in comments refer to Gelman et al (2000)

# Considering 3 types of models: Seperate, Pooled, Bayesian P(THETA,MHU, TAU| DATA) (5.16)
# MODEL =

-

Seperate Estimates, see 3.3, p 67

Pooled Model, (5.13)

Posterior Distribution for TAU, p(TAU|DATA)

Compute E(thetaltau,y)

Compute sd(thetaltau,y)

DENSITIES and SAMPLING from the Posterior density p(THETA,MHU,YAU|Y)
P(TAUIY)*p (MHU | TAU, Y)*p (THETA | MHU, TAU, Y)

O M R ¥ o on
Do WA

# housekeeping

library(MASS)

# The Data

m(—c(28.39,7.94,-2.75,6.82,—.64,.63,18.01,12.16) # AVGY_j
n<-30 # N _j
sigma<—c(14.9,10.2,16.3,11,9.4,11.4,10.4,17.6) # SIGMA_j

sigma2<-sigma”2

# 1. Seperate Estimates
# Assuming that p(THETAIY) is N(M,S~2/N) (see 3.3, p67)
if (model==1) {
#s<-sqrt(sigma2/n) # std dev
s<-sigma
a<-rnorm(100,m{1],s[1])
b<-rnorm(100,m[2] ,5[2])
c<-rnorm{100,m[3],s[3])
d<-rnorm(100,m(4],s{4])
e<-rnorm(100,m(5] ,s[5])
f<-rnorm(100,ml61,s5[6])
g<—rnorm(100,m[7],s[7])
h<-rnorm(100,m[8] ,s[8])
boxplot(a,b,c,d,e,f,g,h,xlab="schools",names=c("A“,“B","C","D","E","F",“G","H“),
main="0bserved effects per school™)

et

# 2. Pooled Estimate

if (model==2) {
pooly<-sum(1/sigma2*m)/sum(i/sigma?) # see 5.13
vary<-1/sum(1/sigma2)
print ("95% CI for pooled estimate")
print(qnorm(c(.025,.975),pooly,sqrt(vary)))
truehist(rnorm(iOO,pooly,sqrt(vary)),nbins=25,xlab="SAT scores")
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# 3. p(TAU!DATA)=pOStTAU see 5.21 and 5.20
if ((model==3) | (medel==4) | (model==5){ (model==6)) {

size<-1000

sampsize<-100

TAU<-seq(0,40,length=aize) # get grid for TAU
priorTAU<-dunif{.5,0,40) # see page 139 and 144

postTAU<-seq(0,0, length=1length (TAU)) # initialize p(TAUIY)
for (i in 1:length(TA)) {
den<-sigma2+TAU[i] "2
V<-1/sum{1/den)
MHUhat<-sum(n/den) /sum(i/den)
postTAU[i]<—priorTAU*V“(1/2)#prod(1/den“(1/2)*exp((m—MHUhat)“2/(—2*den)))
}
postTAU<-postTAU/sun{postTAU) # normalize P(TAU|Y)

if (model==3) {
plot (TAU,postTAU, ylab="posterior den51ty",ma1n=“p(TAUlY) for SAT scores",
,xa.xs—" it yaxs:“lll type—"l")
}
}

# 4. Compute E(theta|tau,y)
# 5. Compute sd(thetaltau,y)
if ((model==4) | (model==5)) {
E<-matrix(0,size,length{m))
3<-matrix(0,size,length(m))
for (i in 1:size) {
Ti2<-TAU[i] "2
DEN<-1/(sigma2+Ti2)

V<~-1/sum{DEN) # (5.20)
MHUhat<-sum(m*DEN) /sum{DEN) # (5.20)
U<-1/(i/5igma2+1/Ti2) # (5.17)
E[i,1:1ength(m}]<-(m/sigma2+MHUhat/Ti2)*U # from exercise 5.10
S[i,1:length(m)]1<-U+(U/Ti2) “2«V # from exercise 5.10
}
S<-sqrt (8)
# plotting

if (model==4) {
plot(TAU,E[1:8ize,1],type="1",ylim=c(0,30),
ylab="Estimated Treatment Effects" ,main="E(THETA_j | TAU,Y)")
for (i in 2:length(m)) {
lines{TAU,E[1:8ize,i])
}
}

if (model==5) {
plot(TAU,S[1:size,1],type="1",ylin=c(0,20),
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ylab="Estimated Standard Deviations",main="sd(THETA_jITAU,Y)") -~
for (i in 2:length(m)) { (f
Lines(TAU,S[1:size,i]) )
}
}

#par(new=’FALSE?)
}

# 6. DENSITIES and SAMPLING from the Posterior density P(THETA ,MHU, YAUY)
# P(TAUIY)*p(MHUITAU, Y)*p (THETA |MHU, TAU, Y)
if (model==6) {
# 1st: Assuming that TAU"uniform on (0,401, pi39,140
TAUgY<-seq(0,0, length=sanpsize) # initializing
MHUgTY<-seq(0,0, length=sanpsize)
THETA<~matrix(0,length(m),sampsize)
dTAUgY<-seq(0,0,length=sampsize)
dMHUETY<-seq(0,0,length=sampsize)
dTHETA<-matrix(0,1ength(m),sampsize)
Jp<-5eq(0,0,length=sampsize)
for (i in 1:sampsize) {
# 1st: Assuming that TAU uniform on (0,401, p139,140, get sample of TAU|IY (5.21)
# Use inverse cdf here ...
TAUgY[i]<—sample(TAU,1,replace=TRUE,postTAU)
tmp<-(TAU==TAUgY [1i] ) *postTAU
tmp<—tmp [tmp>0]
dTAUgY[i]<-tmp[1]
# 2nd: Get MHU|TAU,Y (5.20)
DENgY<-sigma2+TAUgY[i] "2
VgY¥<-1/sum(1/DENgY)
MHUhath<—sum(m/DENgY)/sum(i/DENgY)
MHUETY[1] <-rnorm(1,MHUhatgY,sqrt (VgY))
dMHUgTY[i]<—dnorm(HHUgTY[i],HHUhath,sqrt(VgY))
# 3rd: Get THETA[MHU, TAO,Y £5.17)
for (j in 1:length(m)) {
s2<-sigma2[j]
mj<-m[j]
Ti2<-TAUgY[i] 2
MHUi<-MHUETY[1]
THhat<-(1/s2*mj+1/Ti2+MHU4) / (1/52+1/Ti2)
U<-1/(1/82+1/Ti2)
THETA[j,i]<~rn0rm(1,THhat,sqrt(U))
dTHETA[j,i]<—dnorm(THETA[j,i],THhat,Sqrt(U))
}
# Posterior Density: Since p(THETA,MHU,TAUlY)=p(TAUIY)*p(HHUITAU,Y)*p(THETAIHHU,TAU,Y)
jp[i]<—dTAUgY[i]*dMHUgTY[i]*prod(dTHETA[i:length(m),i])

/-‘\-.

}
# Get 95Y CI for each model Q%
THETAm<-seq(0,0,length=length(m)) -
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THETAv<-s5eq(0,0,1length=length(m))
ci<-matrix(0,length(m),2)
for (j in 1:length(m)) {
x<-THETA[j,1:sampsize]
x<-x[lis.na(x)]
THETAm [j] <-nean{x)
THETAv[j]<=-var(x)
ci[j,i:Q](—qnorm(c(.025,.9?5),THETAm[j],sqrt(THETAv[j]))

a<-THETA([1,1:sampsize)

b<-THETA[2,1:sampsize]

¢<-THETA[3,1:sampsize]

d<-THETA[4,1:sampsize]

e<-THETA[5, 1:sampsizel

f<-THETA[6,1:sampsize]

g<-THETA[7,1:sampsize]

h<-THETA[8,1:sampsize]
boxplot(a,b,c,d,e,f,g,h,xlab="schools",names=c(“A","B","C",”D","E",“F","G","H")

main="posterior densities per school")

}

8.2 Conditional Maximization

# bloodi.r
#
BLOOD1 (MODEL ,MAXITER,S)
Examining the Coagulation of Blood example on p 284 and p385 of (elman
et # al., which has joint posterior demsity:
theta,mu,log(sigma),log(tac) |y ~ prod(j=i:4)N(thetaj|mu,tao~2)*
tao*prod(j=1:4)prod(i=1:n_j)N(y_ijIthetaj,sigma‘2)

1. mode finding algorithm (if model==1)
2. Gibb’s Sampler (if model==2) and number of Gibb’s seq=1 -~ If
>1, see bloodk.r
INPUTS:
MODEL - 1=Mode Finding, 2=Gibb’s Sampler
MAXITER - # of iterations to run - (I like 20-100)
# S - Used for Model 2 - Make inference from the S_th spot in the sequence to the end
# (I like .5)
#
bloodi<-function(model ,maxiter,S3)
{
# Define algorithm parameters
#model<-1
#maxiter<-5

#
#
#
#
#
# using:
#
#
i
#
#
#

# MODEL specific params
# 1. MODE FINDING ..
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# 2. GIBB’S SAMPLING —_
#5<-2/3 # Make inference from the S_th spot in the Gibb’s sequence to the end ( .

# define the data, y_ij

a<~c(62,60,63,59,NA,NA,NA,NA)

b<—c(63,67,71,64,65,66,NA,NA)

c<~c(68,66,71,67,68,68,NA,NA)

d<—c(56,62,60,61,63,64,63,59)

m<-8

n<-4

1envec<—c(length(a[(!is.na(a))]),length(b[(!is.na(b))]),length(c[(!is.na(c))]),
length(di('is.na(d))]))

N<-sum{lenvec) # total samples across n experiments

1enmat<-t(matrix(c(4,6,6,8),n,m))

x<-matrix(c(a,b,c,d),m,n)

ymj<-apply(x,2,mean,na.rm=T)

# HHAARTRR AR A AR AR AAAARFFRA AR Ak A kKK

# Use mode finding algorithm to simulate the jp

# Get first estimates for thetaj, mu; sigma and tao

if (model==1) {

thetaj<-ymj # initial estimate for theta

thetam<-t (matrix(thetaj,n,m))

sigmaj2<—apply((x—thetam)“2/(lenmat~1),2,Sum,na.rm=T)

sigma2<-mean(sigmaj2) (¢
sigma<-sqrt(sigma2) S
mu<-mean{thetaj)

tao2<-var (thetaj)

tao<~sqrt (tao2)

thetahat<-matrix(0,n,maxiter+1)
thetahat[l:n,1]<—thetaj

mehat<-seq(0,0,length=maxiter+1)

muhat [1]<-mu

sigmahat<—seq(0,0,Iength=maxiter+1)

sigmahat[1]l<-sigma

taohat<-seq(0,0,length=maxiter+1)

taochat[1}<-tao

jp<—seq(03O,Iength=maxiter+1)
jp[l]<~ta0*prod(dnorm(thetaj,mu,tao))*prod(apply(dnorm(x,thetam,sigma),2,prod,na.rm=T))
for (i in 2: (maxiter+1)) { '

# Get conditional modes for each thetaj

# (see 9.11 and 9.12 on P 286)

thetahat{1:n,i]<-(1/tao2*mu + lenvec/signa2+ymj)/(1/tao2 + lenvec/sipma2)
thetaj<-thetahat[i:n,i]

thetam(—t(matrix(thetaj,n,m))

# Get conditional modes for ma (9.15) K‘
mnhat[i]<—1/n*sum(thetaj) -
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mu<-muhat [i]

# Get conditional modes for sigma (9.17)
sigmahat[i]<—sqrt(1/N*sum(apply((x—thetam)“2,2,sum,na.rm=T)))
sigma<-sigmahat [i]

sigma2<-sigma“2

# Get conditional modes for tao

tachat [i]<-sqrt(1/(n-1)*sum((thetaj-mu) “2))
tac<-taochat [i]

tao2<-tao~2

# Get log(p(theta,mu,log(sigma),log(tao)Iy)) =
# tao*prod(j=1:4)prod(i=1:nqj)N(y_ijIthetaj,sigma“Q)
jp[i]<—tao*prod(dnorm(thetaj,mu,tao))*prod(apply(dnorm(x,thetam,sigma),2,prod,na.rm=T))

}
print("Using mode finding algorithm to simulate p(theta,mu,signa,tac|y)")
}

B wokcdeorsokaidokok dokokforsoRok ok ko ok ok ol Rk ok ok ok sk ok sk ok

# Use Gibbs Sampler to simulate the ip

# Get first estimates for thetaj, mu, sigma and tao
if (model==2) {

thetaj<-ymj # initial estimate for theta
thetam<-t (matrix(thetaj,n,m))
sigmaj2<-apply((x-thetam)"2/(lenmat-1),2,sum,na.rn=T)
sigma2<-mean(sigmaj2)

sigma<-sqrt(sigma2)

mu<-mean{thetaj)

tao2<-var(thetaj)

tao<-sqrt (tao2)

thetahat<-matrix{0,n,maxiter+1)
thetahat[1:n,1]<-thetaj
zuhat<-seq(0,0,length=maxiter+1)
muhat [1] <-mu
sigmahat<-seq(0,0,length=maxiter+i)
sigmahat[1]<-sigma
tachat<~seq(0,0,length=maxiter+i)

tachat [1)<~tao
jp<-seq(0,0,length=maxiter+1)
jp[l]<—tao*prod(dnorm(thetaj,mu,tao))*prod(apply(dnorm(x,thetam,sigma),2,prod,n))
for (i in 2:(waxiter+1)}) {

# Get theta from N(Mtheta,Vtheta) (9.11)

Mtheta<-(1/tao2+mu + lenvec/sigma2+ymj)/(1/tao2 + lenvec/signa2)
Vtheta<-1/(1/tac2 + lenvec/sigma?)

thetahat [1:n,il<-rnorm(n,Mtheta,sqrt (Vtheta))
thetaj<-thetahat[1:n,i]
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thetam<-t (matrix{(thetaj,n,m))

# Get mu from N(Mmu,Vmu) (9.14)
Mm<-1/n*sun(thetaj)

Vinu<-tao2/n

muhat [i]<-rnorm(1,Mmu,sqrt (Vo))
mu<-muhat i}

# Get sigma from scaled Inv-ci~2(df=Dfsigma,scale=Ssigma)  (9.16)
Dfsigma<-N

Ssigma2<-1/N*sum(apply((x—thetam)“2,2,sum,na.rm=T))

# scaled Inv—chi“2=Df*sca1e‘2/chisq
sigmahat[i]<—sqrt(Dfsigma*SsigmaQ/rchiSq(1,Dfsigma))

# scaled Inv-chi~2=Inv-gamma
#sigmahat[i]<—1/sqrt(rgamma(l,Dfsigma/2,Dfsigma/2*Ssigma2))
sigma<-sipmahat [i]

sigma2<-sigma~2

# Get tao from scaled Inv—ci“Q(df=thao,scale=Stao) (9.18)
Dftao<-n-1

5ta02<-1/(n-1)*sun((thetaj-mu) ~2)

# scaled Inv-chi~2=scale"2/chisq
taohat[i]<~sqrt(thao*Stao2/rchisq(1,thao))

# scaled Inv—chi~2=Inv-gamma
#taohat[i]<—1/sqrt(rgamma(1,thao/2,thao/2*Sta02))
tao<-taohat [i]

tao2<-tao~2

# Get log(p(theta,mu,log(sigma),1og(tao)Iy)) =
# tao*prod(j=1:4)prod(i=1:n_j)N(y_ijIthetaj,sigma“Q) (p 285)
jp[i]<—tao*prod(dnorm(thetaj,mu,tao))*prod(apply(dnorm(x,thetam,sigma),2,prod,na.rm=T))

}
print(“Using Gibb’s Sampler to simulate p(theta,mu,sigma,taoly)")
3

# Compute potential scale reduction, sqrt(R)
#psimean
#B<-N/(n-1)*sum

# Show numerical results of the method

tot<—matrix(0,n+4,maxiter+1)

tot[1:n,1: (maxiter+1))<—thetahat

tot{n+1,1: (maxiter+1)]<-muhat

tot [n+2,1: (maxiter+1)] <-sigmahat

totlnt+3,1: (maxiter+1)]<—taochat

tot[n+4,1:(maxiter+1)]<—log(jp)
rownames(tot)<-c("theta1“,"theta2“,"theta3","theta4“,"mu","sigma","tao","log(jp)")
pPrint (tot)
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if (model==2) {

print ("Posterior Inference for individual parameters")

probs<-c(.025,.25, .5, .75, .975)

suminf<-matrix{0,n+4,8)

for (i im 1:n) {
suminf[i,l:5]<-quantile(thetahat[i,floor((maxiter+1)*S):(maxiter+1)],probs)

}

suminf[n+1,1:5]<—quantile(muhat[floor((maxiter+1)*3):(maxiter+1)],probs)

suminf[n+2,1:5]<~quantile(sigmahat[floor((maxiter+1)*5):(maxiter+1)],probs)

suminf[n+3,1:5]<—quantile(taohat[floor((maxiter+1)*s):(maxiter+1)],probs)

dimnames(suminf)<—list(c(“thetal","theta2“,“thetaB","theta4","mu",“sigma","tao“,
"log(jp)*},c(2.5,25,560,75,97,5, "sqrs (R) "))
print (suminf)

8.3 Importance Resampling and Gibbs Sampler

#######%####%#%%&#&###

bloedk.r

BLOODK (MAXITER,L,K,S)

Function to examine the Coagulation of Blood example on p 284 (sect

9.5) and p385 (sect 11.6) of Gelman

et # al., which has joint posterior density:
theta,mu,log(sigma),log(tao)Iy ” prod(j=1:4)N(thetajimu,tao"2)*

tao*prod(j=1:4)prod(i=1:n_j)N(y_ij!thetaj,sigma”2)
using
Gibb’s Sampler with more than one Gibb’s sequence

INPUTS:

MAXITER - # of iteratioms to run (for each Kth sequence) - (I like 20-100)

L - Number of initial samples to make for importance resampling (IR) -
set to 1 if don’t want IR (I like 1000-2000) (sect 10.5)

K - Number of Gibb’s sampler sequences (I like 2-10) - if you want
to use K=1, use bloodl.r

5 ~ Make Inference from the Sth spot in the Gibb’s sequence to make
inference about the parameters (I like .5 - 7). For example, 8=0
considers the whole seq, 5=.75 considers the last 1/4 of the seq
and 8=1 only considers the last iterate of the seq

bloodk<—function(maxiter,L,K,S)

{
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# load needed function: getR
source ("getR.r")

# FOR DEBUGGING FUNCTIDN ~ Define algorithm parameters

#naxiter<-1

#L<-1 # Number of initial samples to make for importance resampling

#E <~ # Number of Gibb’s sampler saquences - must be >1

#5<-.7 # Make inference from the S_th spot in the Gibb’s sequence to the end

# define the data, y-1j

a<—c(62,60,63,59,NA,NA,NA,NA)

b<—c(63,67,71,64,65,66,NA,NA)

c<—c(68,66,71,67?88,68,NA,NA)

d<-c(56,62,60,61,63,64,63,59)

m<-8

n<-4

lenvec<—c(length(a[(!is.na(a))]),1ength(b[(!is.na(b))]),1ength(c[(!is.na(c))]),
length(d{(!is.na(d))]))

1envecmat<—matrix(lenvec,n,K)

N<-sum(lenvec) # total samples across n experiments

1enmat<—matrix(1envec,m,n*K,,byrow=TRUE)

x<-matrix(c(a,b,c,d),m,n)

xmat<-matrix{(x,m,n*K) # block matrix with data X: IMAT=[XIX1X]...1X]

ymj<-apply (x,2,mean,na.rm=T)

ynjmat<-matrix(ymj,n,K)

# Get first estimates for thetaj, mu, sigma and tao

if (L==1) { # 1. start with K crude estimates frop p- 285
thetaj<-ymjmat
thetam<~matrix(thetaj,m,n*K,byrow=TRUE) # THETAH={THETA1]...lTHETAnITHETAlI...ITHETAn]

sigmaj2<~app1y((xmat~thetam)“2/(lenmat~1),2,sum,na.rm=T)
sigma2<-apply(matrix(sigmajZ,u,K),2,mean)
sigma<-sqrt(sigma2)
mu<-apply(thetaj,2,mean)
tao2<-apply(thetaj,2,var)
tao<-sqri(taol)

}

if (L>1) { # 2. start with IMPORTANCE RESAMPLING of size K from L
# draws from a t_4 distribution
# t_4 is approx to p(mu,log(sigma),log(tao)) - see p 335 and table
# 9.4, results from run of conditional maximization and EM
# start<-matrix(0,L,3)
lenstartmat<—matrix(1envec,L,n,byrow=TRUE)
ymjstartmat<-matrix(ymj,L,n,byrow=TRUE)
mustart(—rt(L,4)*diff(c(65.29,62.73))/difi(qt(c(.25,.75),4))+64.05 # mu starts
mustartmat<-matrix(mustart,l.,n)

sigmastart<—abs(rt(L,4)*diff(c(2.12,2.64))/diff(qt(c(.25,.?5),4))+2.37) # sigma starts
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sigma2startnat<—matrix(sigmastart,L,n)‘2

taostart<-abs(rt(L,4)*diff(c(2.62,4.65))/diff(qt(c(.25,.?5),4))+3.43) # tao starts
tao2startmat<—matrix(taostart,L,n)“2

# An L¥n matrix, each row is THETA
thetastart<-(1/tao2startmat*nustartmat + lenstartmat/sigmaQstartmat*ymjstartmat)/

(1/tao2startmat + lenstartmat/sigma2startmat)
Vstart<-1/(1/tao2startmat + lenstartmat/sigma2startmat)

tempstart<-matrix(0,L,n)
for (i im 1:1L) {
tempstart[i,1:n]<—apply(dnorm(x,matrix(thetastart[i,i:n],m,n,byrow=TRUE),

sigmastart[il),2,prod,na.rm=TRUE)

}

# from (9.19), p(mu,logsigma,logtaoly) from p 288, an LX1 matrix

weight<—taostart*apply((dnorm(thetastart,mustartmat,

sqrt(tao2startmat))*tempstart*sqrt(Vstart)),i,prod)

#IMPORTANCE RESAMPLING
startindex<-sample(1:L,K,replace=FALSE,prob=weight)

thetaj<-ymjmat

m<-mistart [startindex]
sigma<-sigmastart[startindex]
sigma2<-sigma"2
tao<-taostartstartindex]
tao2<-tao"2

thetahat<~matrix(0,n,(maxiter+1)*K)
thetahat [1:n,1:K]<~thetaj
muhat<-matrix(0,K,naxiter+1)
muhat(1:K,1]) <-mu
sigmahat<—matrix(0,K,maxiter+1)
sigmahat[1:K,1]<-sigma
taohat<—matrix(0,K,maxiter+1)
taohat[1:K,1]<—tao

for (i in 2:(maxiter+1)) {

# Get theta from N(Mtheta,Vtheta) (9.11)
mumat<- matrix{mu,n,K,byrow=TRUE)
sigma2mat<—matrix(sigma2,n,K,byrow=TRUE)
taonat<—matrix(tao2,n,K,byrow=TRUE)

Mtheta<-(1/tao2mat*mumat + lenvecmat/sigma2mat*ymjmat)/(1/tao2mat

+ lenvecmat/sigma2mat)
Vtheta<-1/(1/tao2mat + lenvecmat/sigma2mat)
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thetahat[i:n,(i*K—K+1):(i*K)]<—rnorm(n*K,cheta,sqrt(Vtheta))
thetaj<-thetahat[1:n,(i*K—K+1):(i*K)]
thetam<—matrix(thetaj,m,n*K,byrow=TRUE)

# Get mu from N{(Mmu, Vmnu) (9.14)
Mmu<—1/n*apply(thetaj,2,sum)
Vmu<-tao2/n
mu<-rnorm(K,Mmn, sqrt (Vou) )
muhat(1:¥,i]<-my

# Get sigma from scaled Inv~ci‘2(df=Dfsigma,scale=Ssigma) (9.186)
Dfsigma<-N
Ssigma2<—1/N*app1y(natrix(apply((xmat—thetam)“2,2,sum,na.rm=T),n,K),2,sum)
# scaled Inv-chi”2=Df*scale“2/chisq
sigma<~sqrt(Dfsigma*Ssigma2/rchisq(K,Dfsigma))

sigmahat{1:K,iJ<-sigma

sigma2<-sigma~2

# Get tao from scaled Inv-chi“2(df=thao,sca1e=Stao) (9.18)
Dftao<-n-1

Sta02<—1/(n-1)*apply((thetaj—mumat)"2,2,sum)

# scaled Iuv~chi“2=scale“2/chisq
tao<—sqrt(thao*Stao2/rchisq(K,thao))

taohat[1:X,i]J<-taon

tao2<-tao~2

}
print ("Using Cibb’s Sampler to simulate p(theta,mu,sigma,taoly)")

# Show numerical results of the method
if (K==1) {
tot<~matrix(0,n+4,maxiter+1)
tot[l:n,l:(maxiter+1)]<~thetahat
: tot[n+1,1:(maxiter+1)]<-muhat
tot[ﬂ+2,1:(maxiter+1)]<-sigmahat
tot[n+3,1:(maxiter+1)]<—taohat
tot[n+4,1:(maxiter+1)]<-10g(jp)
rownames(tot)<—c("theta1","theta?",“theta3“,“theta4“,"mu",“sigma",“tao”,"log(jp)“)
print(tot)
}

print{"Posterior Inference for individual parameters™)
probs<—c(.025,.25,.5,.?5,.975)

suminf<~matrix(0,n+4,6)

Sindex(—ceiling((maxiter+1)*S)

if (Sindex==0) Sindex<-1

seqler<-maxiter+2-Sindex
#stlentheta<-(maxiter+1—Sindex)*K+1
stlentheta<~(Sindex—l)*K+1

seqlentheta<-K+(seqlen)

22

o



psitheta<-matrix(0,n,seqlentheta)

for (i in 1:n)
psitheta[i,1:seq1entheta]<~thetahat[i,stlentheta:((maxiter+1)*K)]
suminf[i,l:5]<—quantile(psitheta[i,1:seqlenthetaJ,probs)
# the arg passed to "getR" is thetai for each of the K Gibb’s sequences
suminf[i,s]<~getR(matrix(psitheta[i,1:seqlenthetaJ,K,seqlen))

psimu<-muhat [1:K,Sindex: (maxiter+1)]
suminf[(n+1),1:5]<—quantile(psimu,probs)
suminf [(n+1),6)<~getR(psimu)
psisigma(-sigmahat[l:K,Sindex:(maxiter+1)]
suminf[(n+2),1:5]<—quantile(psisigma,probs)
suminf [(n+2),6]<-getR(psisigma)
psitao<—taohat[1:K,Sindex:(maxiter+1)]
suminf[(n+3),1:5]<-quantile(psitao,prohs)
suminf [(n+3),6]<-getR(psitao)

Jp<-8eq(0,0,length=5)

for (i in 1:5) {
# Get log(p(theta,mu,log(sigma),log(tao)Iy)) =
# tao*prod(j=1:4)prod(i=1:nqj)N(y_ijIthetaj,sigma“2) (p 285)
z<—suminf[1:{n+3),1i]
thetaj<-z[1:n]
thetam<-matrix(thetaj,m,n,byrow=TRUE)
mu<-z[5]
sigma<-z[6]
tao<-z{7]
jp[i]<—tao*prod(dnorm(thetaj,mu,tao))*
prod(apply(dnorm(x,thetam,sigma),2,prod,na.rm=T))
¥
suminf [ (n+4),1:51<-1log(jp)
suminf [(n+4) ,6]<~getR(log(ip))
dimnames(suminf)<-list(c("theta1","theta2","theta3“,"theta4","mu","sigma",
"tao","log(jp)"),c(2.5,25,50,75,97.5,"sqrt(R)"))
print(sumint)

}

8.4 Mixture Model Analysis

The R code used to analyze the schizophrenic data set was extensive, and so I chose not to
include it here. It is available at

http://www.math.montana.edu/"parker/software/splus
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