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Abstract

In this paper, we review the random sum estimators of the mean. First,
we describe certain consulting problems that motivate this study. Then, we
compute the expectation and variance of a random sum estimator, and in-
vestigate the conditions under which this estimator is more efficient than the
simple random sample estimator. Finally, a simulation is conducted to analyze
the confidence intervals based on the random sum estimation and to test the
results of the relative efficiency study.

1 Introduction

Random sums of random variables have been studied in the theory of stochastic
processes and stochastic modelling for quite some time. Due to their usefulness in
this area of statistics, numerous results on random sums have been obtained through
the last 30 years. Such results range from purely theoretical, that concern a large
class of random sums ([4], [5], [6]), to theorems on convergence or distribution of
random sums of identically distributed (independent or not) random variables that
follow a certain distribution ([8], [9], [12]). ’

Random sums have also made their way into classic texts. Feller [3] invokes them
as examples on several occasions and states the Central Limit Theorem for random
sums. Mood, Graybill, and Boes [7] offer a brief discussion of random sums, with
sketchy derivations of their expectation and variance. Finally, Taylor and Karlin [10]
present a rather extensive treatment of random sums, including a detailed discussion
of moments and distribution of random sums, and several motivating examples. In
particular, this texts illustrates the differences in applying the Central Limit Theorem,
depending on whether the phenomenon under consideration is modeled by a random
sum or not.

Little attention, however, has been paid to the theory of point estimation for
random sums in the survey sampling literature. This paper addresses this situation.

In simple terms, a random sum is a sum of a random number of random variables.
The number of the terms N in the sum, as well as the individual terms, can have
various distributions. In stochastic theory, N is often assumed to follow Poisson
or geometric distribution. In the discussion that follows, N has a hypergeometric
distribution, and the terms in the sum are identically distributed random variables,
not necessarily independent. We show that random sum approach can be useful in
populations that have a mixture distribution with a significant fraction of zero values
and a nonzero component that follows a continuous distribution.

The idea of utilizing random sums in point estimation arises from a number of sta-
tistical consulting problems that exhibit mixture distributions. We shall now describe
two such problems from the practice of Prof. Borkowski [1].

1. Medicaid overpayment study . Medicaid providers receive payments based
on claims submitted for reimbursement. When a provider submits a claim
and receives payment for items not supported by Medicaid, then this provider



receives an overpayment. Audits are conducted by Medicaid to estimate the
total amount of overpayment for every provider. Because the number of claims
submitted by one provider is large, it is unrealistic to audit all claims. Thus, a
random sample is taken from the population of claims, and the total provider
overpayment is estimated based on the overpayment in the sample.

It is not unusual for a provider to submit about 50,000 claims in a 12- to 16-
month period. From the population of claims from a particular provider, a
sample of at least 200 claims is taken. Confidence interval estimates are based
on data from the sample, and are used to determine how much health care
providers must reimburse Medicaid for the overpayment they received.

Because not all claims contain an overpayment, there is a large fraction of
zeroes (no overpayment) in the sample. So the distribution of overpayments is
a mixture of a zero part and a positive overpayment part that we assume to be
continuously distributed.

2. Assessment of highway maintenance activities. The study was conducted
to assess the quality of highways in the state of Montana. A sample of 1/10
mile highway segments was taken, and on every segment, 23 characteristics were
measured for deficiencies, such as the proportion of striping that does not meet
standards and the number of feet of fencing not up to standards.

For every characteristic measured, if the entire 1 /10 mile segment meets stan-
dards, a value of 0 is assigned. Therefore, a large fraction of zero values is
present in the sample, and each characteristic follows the aforementioned mix-
ture distribution.

We mention yet another practical problem with a mixture distribution of the same
type. The author had a conversation with a, physicist who conducted the following
experiment. A thin sheet of material is bombarded with alpha particles. On the
opposite side of the sheet, a detector records the energy level of every particle that
it captures. Clearly, not all alpha particles make it through the sheet, because some
are reflected. In that case, a value of zero is assigned. Thus a significant number of
zeroes in the recorded data.

This paper is focused on the analysis of random sum estimators of the mean
in finite populations that exhibit a mixture distribution with a significant fraction
of zeroes. After stating the necessary definitions and assumptions in Section 2, we
introduce the random sum estimator in Section 3 and discuss its most basic proper-
ties. Then, in Section 4, we obtain the formulas for variance estimates used in the
construction of confidence intervals. Based on these formulas, we perform a relative
efficiency study and a simulation to test the findings of the study. This is described
in Section 5.

In the subsequent discussion, we shall adopt the terminology from the Medicaid
study.



2 Preliminaries

Consider a finite population of units (“claims”), and let N denote the size of the
population. We are interested in measuring the characteristic Y (“overpayment”)
in every unit. The value of Y in the i-th unit will be denoted by y;. Throughout
the paper, we assume that the population has a significant portion of units with
¥ = 0 (“no-overpayment part”), and that for the rest of the population, ¥ >0
(“overpayment part”). For the Medicaid study, the zero portion was typically near
40%. Furthermore, we assume that Y is continuously distributed on the overpayment
part of the population.

Let N1 denote the number of units in the overpayment part of the population.
To simplify the indexing, without loss of generality we assume that the first N; units
belong to the overpayment part. Thus we have

yi> 0 for i =1,...,N, "
Y = 0 for 14 =N1+1,...,N

Define g to be the fraction of the population with overpayments:

q - N . .
Further, 4 will denote the mean of Y over the entire population, and y; the mean of
Y across the overpayment part: :

1 N 1 Ny
u=ﬁ;y¢, /J'lzﬁl';yi- (2)

Similarly, 02 denotes the variance of Y over the entire population, and ¢? the variance
of Y across the overpayment part. In addition, 7 denotes the total overpayment in

the population:
N
T=2 %
i=1

We now state some elementary but useful identities.

Lemma 1. With the assumptions stated above, the following are true:
(a) p=qui;
(b) 7= Np= Ny = qNp,.

In addition, by performing simple algebraic transformations one can easily show
the following.

Lemma 2. 0% =qo? +q(1 — q)p2.

In the next section we shall use the definition of a random sum of random variables,
which we now state [10].



Definition 3. Let £,,¢,,... be a sequence of independent and identically distributed
random variables, and let K be a discrete random variable, independent of £, &, ...
and having the probability mass function pr(n) = Pr{K = n} for n = 0,1,....
Define the random sum X by

0 : if K =0,
X‘{§1+---+§K . if K >0. (3)

We save space by abbreviating (3) to simply write X =& +--. + &k, understanding
that X = 0 whenever K = 0.

Using the notation given in this definition, we state an important proposition [10].
Proposition 4. Suppose that & and K have finite moments:

Elg] = p,  Varlty] =07
EK]= v, Var[K] =72,

then the moments of X are given by
E[X] = v, Var[X] = vo® + p272 . (4)

We note that Proposition 4 is valid if the terms of the random sum are independent,
and identically distributed. However in our case, as we shall see in the next section,
the independence assumption is not satisfied, and the formula for the variance of a
random sum will have to be adjusted.

3 Random sum estimators

Suppose that a random sample of size n is taken from the population of size N that has
N units with y; > 0 (overpayment) and N — N, units with ¥ = 0 (no overpayment).
Denote by n; the number of units in the sample with overpayment. Without loss of
generality, we assume that the units in the sample are ordered so that the first n;
units form the overpayment part of the sample.

The goal of taking the sample is to estimate the mean overpayment in the popu-
lation, i.e. p. The sample mean is typically used for that purpose:

1 n
y=ﬁ ;yz

§ is an unbiased estimator of y, and due to the Central Limit Theorem, it is ap-
proximately normal for large sample size n. However, for smaller n, 7 is very poorly
approximated by the normal distribution, because the population has a significant
fraction of zeroes. To account for this mixture of zero and nonzero parts, we suggest
a random sum estimator of the following form:

1 &
pr==>Y u, (3)
n =1 '
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where n; has a hypergeometric¢ distribution:

ny NHyp (N7N1’n) . (6)

1 n n
Note that Z Y = Z y; because Z Y; = 0, and hence, jip = 7 . Therefore, the
i=1 i=1 i=ny+1
two estimators, § and [ig, always yield the same estimated value of . In other words,
it is the same quantity, which is looked at from two different viewpoints. However,
their estimated variances, and consequently the confidence intervals based on these
two estimators, are different.
We shall now show that fig is an unbiased estimator of p. Note first that since in
R, y; always belongs to the overpayment part, then

E[yz]z,ul, i=1,2,...,n1.
Now, applying Proposition 4 and Lemma, 1, we obtain

. 1 1 1 nN,
Elpg] = ;E[Z y| = 5 Pl Byl = — == = qui=p.

=
Thus fip is unbiased.

We conclude this section by stating the Central Limit Theorem for random sums,
as it appears in Feller [3].

Theorem 5 (Central Limit Theorem for Random Sums). Let Xx = & +
oo+ &k, where § and K are mutually independent random variables. Suppose that
& have a common distribution F with zero expectation and variance 1. Further, let
N1, N, ... be positive integer-valued random variables such that

nIN, 25 1. (7)
Then the distribution of Xy, /v/n tends to M.

As noted in [3], Xy,/v/n is not normalized to unit variance. In addition,
Theorem 5 applies to cases with E[N,] = co and even when expectations exist, (7)
does not imply that n™! E[N,] — 1.

4 Variance formulas

Recall that the variance of the sample mean in finite populations is given by

N—-n ,
o, ®)

| Var[g| =

—-n
where

is the finite population correction. Thus the estimated variance of the
sample mean is

—s (9)

We shall now obtain a formula for the variance of the random sum estimator Lr.

Varlg] =

7



Proposition 6. The variance of the random sum estimator fr of the population
mean 1, is given by the following:

F 14 of n-—1 w - N-n
Varljip] = = o7 (1 N—l) + -9 5—- (10)
PROOF. Let M = min{n, N;} and denote h(k) the hypergeometric probability
mass function: h(k) = P(n; = k). By formulas of conditional probability:

Var[iir] = E [(% i yz)2] — = ij: E [ (% i yi)zlnl = k]-P(nl =k) — 2

=1

M k .
= % > E [Z v+ yiyj] h(k) — p
k=0 i=1 i#j
=5 > (kB2 + 50— 1) Blygy)) k) - 12
k;O (11)
= % > (k(@F+ 1) +k(k - 1) (Cov(yi,yy) + ) bk =2
1 N M 1,
= g (1D D kh(K) + 25 it 2 Kk = Dh(k) —

M
1
5 2 bk 1) Covlu, 1) (k.

because E[y?] = 0? +p? and Elyiy;] = Cov (y;,y;) + 2 . Now the first three
terms in (11) correspond to the variance of jip for the case when the summands in
the random sum are independent, i.e. Cov[yi, y;] = 0. So by Proposition 4, their sum
is equal to

N —n

03 E[n1] + p2 Var[n,] = N1

2 N%
ot + Lg(1 - g) (12

S|

However, because a sample without replacement is taken from a finite population,
the items in the sample are not independent, and
2
01
Covly;, y;] = N -1’

if both y; and y; belong to the overpayment part of the sample. Thus, the last term



in (11) is non-vanishing and is equal to

2
o1

Ay > k(k—1)h(k)

2

- ___ % 2y _
= W 25 (Varful + (EpmP) ~ Bln) )
o? (nN1 (N-M)(N-n) n2N? nN;
(M=) N~ NN -1 Nz N
_ 9 on—1
n P N=1"
Now equation (10) follows from (11), (12) and (13). O

Analogous to (9), the estimated variance of the random sum estimator can be
computed as follows:

T~ (j ’n,-—l 52,\ AN—’I’L
Var[uR]:Esf (l_N—l) + ﬁq(l—q)ﬁ_—l, (14)

where § = n;/n. : ,

By the Central Limit Theorem for finite populations, the sample mean is ap-
proximately normal for sufficiently large n, so the confidence interval for 1 with the
significance level «, based on the sample mean, is

‘[17 —ti—a/2 \/ @[g] Y —tia/2y/ \7;;[@] ] ;

where \7a\r[fg] is given by (8). For the same reason, the confidence interval based on

fp is
[iféR —ti—a/2 \/ @[ﬂR] s iR~ t1—a/2 Y/ @[ﬂR] ] ,

where \75[,&3] is given by (10).

We note that for relatively small n, the condition of approximate normality may
not hold for either the sample mean or the random sum estimator. Therefore, this
condition, under which we can use the t-distribution in the above formulas, needs
verification. Apart from a purely theoretical verification, which is beyond the scope
of this paper, we recommend performing bootstrapping to study the distribution of
estimators in question.

5 Comparison of estimators

We are interested in analyzing the efficiency of the random sum estimator, compared
to the sample mean. More specifically, we would like to determine under what condi-
tions on the population the random sum estimator yields a smaller estimated variance
and, as a consequence, a narrower confidence interval. The following parameters will
be considered:



1) Population size N,
2) Fraction of nonzeroes g,

3) Mean of the overpayment part of the population 4,

4) Coefficient of variation of the overpayment part k; = 2

M1

’

5) Sample size n.

To measure efficiency, we use the following efficiency index:

_[Var(jig)
Bff = \/——_Var(g) . (15)

This index reflects the relative width of the confidence intervals for u constructed
on fig and j. We shall try to identify the combinations of parameters that yield
Eff < 0.99, that is, for which there is a visible improvement that results from using
the random sum estimator.

5.1 Relative efficiency study

Using formulas (8) and (10) and keeping in mind Lemma 2, we can rewrite (15) as

follows:
/| N
Eff = N1 (16)

which is almost indistinguishable from 1 if the population size N is large. However,
Lemma 2 does not hold for the estimated variances s2 and s2, so the empirical, or ob- -
served, efficiency will differ from the theoretical value (16). To make this adjustment,
we first reformulate Lemma 2 for the estimated variances.

Lemma 7. The estimated variances of the overall sample mean § and the overpay-
ment sample mean §; satisfy the following equation.:

2 q\n"l 2 n ,\A_2
= 1- .
s P 81+n—1( 4) 497

We then analyze the efficiency index of the form

Ef = (17)

Var(g)

where \/fa\r(ﬂR) and \//a\r(g) are given by (9) and (14). Such analysis was performed
in Microsoft Excel®. A typical graph from the Excel analysis is shown in Figure 1,
where the logarithm of Eff is measured along the vertical axis.

The following conclusions were reached based on the Excel analysis.

10



Figure 1: A typical graph of log(Eff) for fixed N, ui, k;.

. [tr 18 better than 7 when the sample size n is small. For example, if the popu-
lation size N = 1000, then n = 20 results in Eff ~ 0.98, and n = 50 results in
Eff ~ 0.996.

. Population size N and the true mean u have no effect on the efficiency of jig,
provided N is sufficiently large.

. If the coefficient of variation is small, i.e. k; < 0.1, efficiency is nearly constant
across the values of ¢ = 0.1...0.9.

. If k1 > 0.1, curvature is present with respect to ¢, with efficiency best at qg=20.5
and worse at ¢ = 0.1 than at ¢ = 0.9.

. If k; > 0.32, then jig is not more efficient than g for values of ¢ close to 0.

. If k1 > 0.8, then fip is not more efficient than 7 for any value of g. In particular,
the efficiency index is close to 1 for ¢ > 0.5, and greater than 1 for q < 0.5.

11



5.2 Simulation study

The conclusions of the previous section were based on purely theoretical values of
the variances and the efficiency index. Moreover, no conclusion was made about the
coverage rate of the confidence intervals based on the two estimators. Due to these
facts, a simulation study was conducted in order to test whether the above conclusions
hold for the sample statistics, and to compare the coverage rates of the confidence
intervals built on iz and 7.

Since prior evidence shows that the true mean u has no effect on the efficiency
index, it was fixed throughout the simulation at the level ¢ = 10. For the rest of
the factors, a factorial design was adopted with 4 levels of k; and 3 levels of all other

factors. Thus 108 combinations of factors were used. The factor levels are listed ‘in
Table 1. -

Table 1: Simulation design

Factor Levels
N 100 550 1000
k1 0.1 0.3 0.5 0.7
q 0.1 0.5 0.9
n 10 20 40

For every combination of N, k; and ¢, a simulated population with these factor
levels is generated in SAS®. Each population is then read into MATLAB®, where
for every sample size, 1000 samples are taken, and the 95% confidence intervals based
on fip and § constructed for every sample. Then we compare the length of the
confidence intervals and check their coverage rate. The results are averaged across
the 1000 samples, and written to an output file. The SAS and MATLAB programs
used in the simulation are listed in Appendices A.1 and A.2.

The following three tables summarize the results of the simulation. The results
are listed separately for every level of the sample size.
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Table 2: Simulation results for sample size n = 10

N | k | g | Coverage | Coverage | [Clsgrs | | |CIgs| | Efficiency
Rate SRS | Rate RS '

100 (0.1 0.1 99.7 99.7 6.2128 | 5.9466 | 0.95715
0.5 92.6 91.2 7.0381 | 6.7242 | 0.95539

0.9 69.2 69.2 3.6994 | 3.5614 | 0.96270

0.3 0.1 99.9 99.9 5.6629 | 5.6132 | 0.99122

0.5 95.5 95.0 7.3421 | 7.1128 | 0.96877

0.9 94.8 94.7 5.56521 | 5.4593 | 0.98329

0.510.1 99.7 99.7 6.0210 | 6.0882 | 1.01116

0.5 94.9 94.7 8.2038 | 8.0256 | 0.97827

0.9 95.5 95.5 7.2381 | 7.1735 | 0.99107

0.710.1 99.9 99.9 9.4351 | 9.5969 | 1.01715

0.5 93.1 93.4 9.4817 | 9.4375 | 0.99533

0.9 94.4 94.6 8.6615 | 8.6287 | 0.99621

550 {0.1]0.1 99.7 99.7 6.2313 | 5.9288 | 0.95145
0.5 94.4 92.6 7.1952 | 6.8457 | 0.95142

0.9 73.1 73.1 3.9988 | 3.8363 | 0.95936

0.3]0.1 99.5 99.2 6.5693 | 6.3870 | 0.97225

0.5 97.1 96.5 7.7628 | 7.4891 | 0.96475

0.9 91.3 91.1 | 5.8948 | 5.7760 | 0.97985

0.510.1 99.8 99.8 7.0727 | 6.9270 | 0.97940

0.5 93.2 93.4 8.1005 | 7.9550 | 0.98204

0.9 95.7 95.6 7.6616 | 7.5763 | 0.98887

0.710.1 99.5 99.6 7.1085 | 7.2033 | 1.01334

0.5 95.2 95.2 9.3138 | 9.1998 | 0.98776

0.9 95.3 95.3 9.2141 | 9.1383 | 0.99177

1000 { 0.1 | 0.1 99.4 99.4 6.2843 | 5.9789 | 0.95139
0.5 94.5 92.0 7.2069 | 6.8551 | 0.95119

-10.9 72.5 72.4 3.9278 | 3.7670 | 0.95907

0.3 (0.1 99.6 99.5 6.3441 | 6.1494 | 0.96931

0.5 95.6 95.1 7.8016 | 7.5316 | 0.96539

0.9 94.1 94.1 5.7533 | 5.6288 | 0.97836

0.510.1 99.7 99.5 6.6483 | 6.6389 | 0.99859

0.5 94.8 94.4 8.4185 | 8.2400 | 0.97879

- 109 94.5 94.4 7.4134 | 7.3259 | 0.98819
0.7]0.1 99.7 99.7 7.0257 | 7.1383 | 1.01603

0.5 93.1 93.1 9.7527 | 9.6397 | 0.98841

0.9 93.9 93.8 9.1870 | 9.1202 | 0.99273
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Table 3: Simulation results for sample size n = 20

N | k | g | Coverage | Coverage | |CIsgrs| [ [CIrs| | Efficiency
Rate SRS | Rate RS

100 { 0.1} 0.1 99.5 99.2 3.0706 | 3.0159 | 0.98218
0.5 94.1 93.6 4.3464 | 4.2616 | 0.98048

0.9 90.6 90.5 2.4995 | 2.4560 | 0.98257

0.310.1 99.6 99.5 2.8356 | 2.8727 | 1.01306

0.5 94.7 94.4 4.5283 | 4.4699 | 0.98709

0.9 94.3 94.3 3.4641 | 3.4425 | 0.99378

0.50.1 98.9 98.9 2.9723 | 3.0502 | 1.02621

0.5 94.8 94.7 5.0878 | 5.0464 | 0.99187

0.9 94.9 94.9 4.4929 | 4.4833 | 0.99787

0.710.1 99.2 99.2 4.6453 | 4.7932 | 1.03184

0.5 93.7 93.7 5.9362 | 5.9360 | 0.99997

0.9 94.1 94.2 5.4200 | 5.4223 | 1.00043

550 [ 0.1 0.1 99.7 99.7 3.2181 | 3.1441 | 0.97700
0.5 95.4 95.2 4.6812 | 4.5711 | 0.97648

0.9 88.5 88.5 2.7760 | 2.7179 | 0.97907

0.3]0.1 99.8 99.6 3.4278 | 3.4066 | 0.99382

0.5 96.1 96.0 4.9901 | 4.9049 | 0.98292

0.9 95.0 95.0 3.9269 | 3.8873 | 0.98990

0.5]0.1 99.6 99.5 3.7109 | 3.7053 | 0.99849

0.5 94.7 94.3 5.3042 | 5.2594 | 0.99155

0.9 93.8 93.7 5.0071 | 4.9804 | 0.99467

0.7]0.1 96.3 96.6 3.6925 | 3.7865 | 1.02545

0.5 93.6 93.6 6.1058 | 6.0729 | 0.99461

0.9 94.7 94.4 5.9725 | 5.9506 | 0.99633

1000 { 0.1 | 0.1 99.9 99.9 3.2760 | 3.2003 | 0.97689
0.5 94.1 93.7 4.6835 | 4.5719 | 0.97617

0.9 88.4 88.4 2.7963 | 2.7362 | 0.97851

0.3]0.1 99.9 99.9 3.2279 | 3.2033 | 0.99237

0.5 94.8 94.3 5.0825 | 4.9957 | 0.98292

0.9 94.3 94.1 3.7781 | 3.7371 | 0.98916

05101 98.2 98.3 3.3781 | 3.4339 | 1.01652

0.5 94.9 94.7 9.5353 | 5.4769 | 0.98943

0.9 96.1 96.1 4.9586 | 4.9298 | 0.99419

0.710.1 97.1 97.7 3.5666 | 3.6620 | 1.02674

0.5 95.1 94.9 6.5016 | 6.4630 | 0.99406

0.9 95.6 95.4 6.0913 | 6.0694 | 0.99640
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Table 4: Simulation results for sample size n = 40

N | k| g | Coverage | Coverage [ [CIggs]| | [Clrs | | Efficiency
Rate SRS | Rate RS

100 1 0.110.1 95.6 95.5 1.5738 | 1.5646 | 0.99414
0.5 94.6 94.4 2.5713 | 2.5529 | 0.99283

0.9 94.3 94.2 1.5397 | 1.5299 | 0.99359

0.3]0.1 94.2 94.6 1.4665 | 1.4867 | 1.01377

0.5 94.6 94.6 2.6861 | 2.6758 | 0.99617

0.9 95.1 95.1 2.0600 | 2.0586 | 0.99932

0.5]0.1 92.7 92.9 1.5486 | 1.5844 | 1.02312

0.5 94.9 94.9 3.0160 | 3.0111 | 0.99839

0.9 94.9 94.9 2.6671 | 2.6708 | 1.00139

0.7]10.1 90.6 91.0 2.4430 | 2.5117 | 1.02815

0.5 95.1 95.1 3.5318 | 3.5409 | 1.00258

0.9 95.0 95.0 3.2167 | 3.2258 | 1.00281

550 | 0.1 0.1 99.1 99.0 1.8761 | 1.8558 | 0.98918
0.5 95.6 95.3 3.1387 | 3.1034 | 0.98875

0.9 924 92.3 1.9110 | 1.8915 | 0.98979

0.3]0.1 95.4 95.5 1.9783 | 1.9784 | 1.00003

0.5 94.2 94.1 3.3498 | 3.3229 | 0.99195

0.9 94.3 94.2 2.6264 | 2.6146 | 0.99550

0.5]0.1 94.1 94.3 2.1107 | 2.1198 | 1.00433

0.5 95.2 95.2 3.5854 | 3.5722 | 0.99630

0.9 94.4 94.4 3.3918 | 3.3845 | 0.99784

0.710.1 91.5 924 2.1964 | 2.2444 | 1.02185

0.5 92.9 92.9 4.0695 | 4.0605 | 0.99779

0.9 95.3 95.3 4.0378 | 4.0325 | 0.99869

1000 | 0.1 { 0.1 98.9 98.8 1.9039 | 1.8831 | 0.98908
0.5 93.5 93.5 3.1714 | 3.1346 | 0.98841

0.9 924 92.2 1.9298 | 1.9093 | 0.98938

0.3 0.1 96.0 95.9 1.9230 | 1.9219 | 0.99942

0.5 94.3 94.2 3.4328 | 3.4046 | 0.99180

0.9 95.0 94.8 2.5772 | 2.5636 | 0.99474

0.5(0.1 92.6 92.8 2.0674 | 2.0950 | 1.01336

0.5 94.5 94.2 3.7533 | 3.7344 | 0.99499

0.9 95.6 95.6 3.3272 | 3.3183 | 0.99732

0.7 0.1 92.3 92.7 2.1691 | 2.2211 | 1.02398

0.5 94.5 94.6 4.3976 | 4.3866 | 0.99748

0.9 94.4 94.4 4.1531 | 4.1467 | 0.99847
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The simulation confirmed earlier conclusions about the efficiency of the random
sum estimator fig. In other words, the conclusions we reached for the theoretlcal
formulas also hold for the sample statistics.

We may also notice that the random sum estimator is the most efficient compared
to the sample mean, when the coefficient of variation k; = 0.1. In addition, as the
population size increases from 100 to 1000, the efficiency improves slightly (from 0.957
to 0.951). As sample size increases from 10 to 40, the efficiency index increases to 1,
meaning that jip does not present any advantages at n = 40.

In the best possible scenario, the random sum estimator offers a 5% improvement.

The simulation also offers new information about the coverage rates. As Tables
2, 3, and 4 indicate, the coverage rate is generally close to the nominal value of
95%. Thus, the simulation provides evidence in support of our assumption that
both estimators are nearly normal for smaller sample size. This evidence in no way
constitutes a definitive proof of the assumption. It can be completely proved (or
disproved) only by further research.

Several more observations on coverage rates are worth mentioning. First, the
coverage rates are close to 99% when ¢ = 0.1, that is, when there are relatively few
positive values in the population. This suggests a better approximation by the normal
distribution, which results in the coverage rate significantly above the nominal level.

Second, when k; = 0.1, ¢ = 0.9, we observe a very low coverage rate for both
estimators. For n = 10, it goes as low as 69%. This fact is troublesome and should
be analyzed further.

Third, when ¢ = 0.5, we notice the largest discrepancy between the coverage rates
of ip and §, with the rate for the random sum estimator more than 1% lower. This
phenomenon is most pronounced when k; = 0.1. We conclude that although jip is
most efficient when ¢ = 0.5, this efficiency is largely achieved through reduction in
the coverage rate. This may be acceptable in some situations, while undesirable in
others. :

6 Conclusions

Our research has shown that random sum estimators of the mean in finite popula-
tions should be considered for practical use in limited circumstances. This includes
situations when only a small sample can be taken from the population, and when
the positive part of the population has relatively small variability. That, of course,
implies that the population must be a mixture of zero and positive parts.

- In such situations, the random sum estimator offers a 5% reduction in the length
of the confidence interval, with the coverage rate close to the nominal level. In the
Medicaid example, where the lower end of the confidence interval is used to bill health
care providers for overpayment, a 5% reduction in length could mean thousands of
dollars more being returned to Medicaid.

However, the use of random sum estimators can be much harder to justify in the
court than the standard sample mean, and the option of random sum estimation
should be carefully evaluated in all individual situations.
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Another possibility is to make use of the additional information that is often avail-
able. In the Medicaid study, the total payment for every claim is readily accessible. If
we assume that the amount of overpayment is directly proportional to the total pay-
ment, then the ratio between the two could be estimated. Approaching the problem
from the random sum viewpoint, we arrive at random sum ratio estimators, which
is a topic of separate research [2]. Preliminary results of that research indicate that
the improvement that results from using random sum ratio estimators is much more
substantial than what we see here.

References
[1] J. Borkowski, Private communication, 2003.

[2] J. Borkowski and Y. Shvetsov, Random sum ratio estimators in finite populations,
in progress.

[3] W. Feller, An introduction to probability theory and its applications, Volume II,
2nd edition, John Wiley and Sons, New York, 1971.

[4] T. Jiang, C. Su, and Q. H. Tang, Limit theorems for the random sum of partial
sums on independent, identically distributed random variables (in Chinese), J.
Univ. Sci. Technol. China 31 (2001), 394-399.

[5] V. Yu. Korolev, On the convergence of distributions of random sums of indepen-
dent random variables to stable laws, Theory Probab. Appl. 42 (1997), 695-696.

[6] V.M. Kruglov, Weak compactness of random sums of independent random vari-
ables, Theory Probab. Appl. 43 (1999), 203-220.

[71 A. M. Mood, F. A. Graybill, and D. C. Boes, Introduction to the theory of
statistics, 3rd edition, McGraw-Hill, New York, 1974.

[8] Z. Rychlik and T. Walczyriski, Convergence in law of random sums with nonran-
dom centering, J. Math. Sci (New York) 106 (2001), 2860-2864.

[9] D. O. Selivanova, Estimates for the rate of convergence in some limit theorems
for geometric random sums, Moscow Univ. Comput. Math. Cybernet. 1995, no.
2, 27-31.

[10] H. M. Taylor and S. Karlin, An introduction to stochastic modeling, Academic
Press, Orlando, 1984.

[11] S. K. Thompson, Sampling, 2nd edition, John Wiley and Sons, New York, 2002.

[12] P. Vellaisamy and B. Chaudhuri, Poisson and compound Poisson approzimations
for random sums of random variables, J. Appl. Probab. 33 (1996), 127-137.

17



Appendices
Al. SAS Program

dm °LOG; clear; OUT; clear;’;
options nodate nonumber 1s=100 ps=3000;

data popul (drop= i N q kyl N1 muyl syl seedl u tailprob);

N = 1000;
q = 0.9;
muyl = 10;
kyi = 0.7;
N1 = Nxq;
y=0; u=0;

syl = muylxkyl;

tailprob = probnorm(-muyi/sy1);
seedl = round(ranuni(0)*1000000);
retain seedl ; ‘

do i=1 to Ni;
call ranuni(seedl,u);
y = probit(u*(1-tailprob) + tailprob);
y = muyl + yxsyil;
output;
end;

do i = Ni+1 to N;

y =0;
output;
end;

proc print data = popul;
ID y;

run;
quit;
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A2. MATLAB Program

% Simulation of random sum estimator of the mean
% Final version

K = 1000; % Number of runs for simulation
n = 10; % Sample size
trials = 36; % Number of trials for every sample size

fileout = fopen(’results_nl0.dat’,’w’);
fprintf(fileout, ’Trial CovRate_S Cov Rate_R CI Length_S’);
fprintf(fileout, ’CI Length R Efficiency\n\n’);

tvalue = tinv(.975,n-1);

for trial = 1:trials

fname = [ ’popul_’ num2str(trial,’%2d’) ’.dat’ 1;
Y = load(fname);

[N,a] = size(Y); if a"=1

error (’Incorrect data for the population’);

end

ymean = mean(Y(:)); % true mean of population
clevel_s = 0; % true confidence level of SRS CI
clevel_r = 0; % true confidence level of RS CI
avlen_s = 0; % average length of CI

avlen_r = 0;

i =1; while (i <= K) :
J = sample_wor(n,N); % take a random sample from population
sample = Y(J);

nl = 0; % determine the dimension of overpayment part
while (ni<n)&(sample(ni+1))
nl = nl + 1;
end
if ni>1

% compute statistics for SRS and RS estimators
ybar_s = mean(sample(:));
ybar_r = mean(sample(1:n1));
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s = samplevar (sample(:));
sl = samplevar(sample(1:n1));
q = nl/n;

var_s (N-n) / (N*n) *s;
var_r = g/n¥si*(1-(n-1)/(N-1)) + ybar_r~2 /n *(1-q)*q*(N-n)/(N-1);

cil_s = ybar_s - tvalue*sqrt(var_s);
ciu_s = ybar_s + tvalue*sqrt(var_s);
cil_r = g*ybar_r - tvalue*sqrt(var_r);
ciu_r = gtybar_r + tvaluexsqrt(var_r);

len_s = ciu_s - cil_s;
len_r = ciu_r - cil_r;
avlen_s = avlen_s + len_s;
avlen_r = avlen_r + len_r;

capt_s = (cil_s < ymean)&(ymean < ciu_s);
capt_r = (cil_r < ymean)&(ymean < ciu_r);
clevel_s = clevel_s + capt_s;
clevel_r = clevel_r + capt_r;
i=1i+1;
end
end
clevel_s = clevel_s/K%100;
clevel_r = clevel_r/K%100;

avlen_s = avlen_s/K;
avlen_r = avlen_r/K;
rlen = avlen_r/avlen_s;

fprintf(fileout, °%12.4f & %12.4f §& %12.4f & %12.4f & %6.5f \\\\ \n’,
clevel_s,clevel_r,avlen_s,avlen_r,rlen);
trial

end

status = fclose(fileout);
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function Sample = samplewor(ss,ps)
%
% A function for selecting a sample without replacement
%
h ss
b ps
h
clear Sample
r = [1:ps]’;
out = [];
for j=1:ss;
kk = unidrnd(length(r));
out = [out;r(kk)];

I

sample size
population size

r(kk) = [1;
end;
Sample = sort(out);
return

function svar = samplevar(X)
% SAMPLEVAR compute sample variance s°2 of X

Cclear svar;
[n,a] = size(X);

if n==1
n = a;
elseif a==1
else
error(’Incorrect dimension’);
end

svar = sum((X-mean(X))."2)/(n-1);
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