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1 Introduction

Asymptotic results have long been important in statistic statistical theory.
Before computing power was inexpensive, asymptotic theory provided ap-
proximations for computationally tedius tasks. For example if X ~ Bin(n, p)
then for large values of n, X can be well approximated by the normal distri-
bution N(np, np(1 — p)). Reference books contained hundreds of approxima-
tions so that statisticians could preform their work without excessive tedious
calculation. Fortunately cheap computing has removed the need for many
of those approximations, but other limiting results are so fundamental to
the study of statistics that introductory asymptotic theory still should be
covered at the graduate level.

The Central Limit Theorem is most often presented in terms of estimating
the mean of a distribution. Suppose the random variables X; are indepen-
dently and identically distributed with mean p and variance o?. Then the
Central Limit tells us that the sample mean X = 2T Xi/n has a distribution
that is approzimately N(u, 0%/n). It is relatively straightforward to prove the
CLT using moment generating function, but it also is interesting to exam-
ine how quickly the distribution converges to normality. Furthermore, it is
possible to make adjustments to increase the accuracy of the approximation.
This is of particular importance in small sample situations. Edgeworth ex-
pansions are one method of using information about higher order moments
to increase accuracy. Edgeworth expansions were introduced by Edgeworth
(1905). Introductions to the Edgeworth expansion can be found in Wallace
(1958), Chambers (1967), Hall (1992), Chi (2001), and Boik (2004).

2 Taylor Expansions

Recall from calculus that if the convergence criteria are met, then the Taylor
expansion of a function f about the point z, is

£(@) = flw0) + f' (o) (@ — z0) + L. ”(xO)(;! —m)

or written more compactly
e _ i
£@) =3 5O zo) T2
=0 :

One Taylor series that is often used in the study of Characteristic Func-
tions is the series representation of f(z) = e where i — /1. Since



the derivative of e® with respect to z is ite™ then the Taylor series, when
expanded around z = 0 is

(itx)?  (itz)?
o1 + 3] + ...

In numerical methods, it is very common to only use the first several terms
in the series as an approximation to the actual function. It then becomes
important to keep track of the order of magnitude of the terms that are
discarded. Consider the Taylor Series expansion of f(z) = sin(z) around

z=0:
: (z)*  (2)° n (@)
sin(z) =z 3l + TR + (-1) n i)l
Since this is an alternating series it is easy to show that keeping the first n
components of the sum and discarding the remaining will result in an error
term that is no greater than the first term that is dropped. As z — 0 the
exponents get very small and the factorials get very large. Both of the above
Taylor series are valid, but the expansion of sin appears to converge much
more rapidly. It is useful to be able to compare how rapidly the two series
converge. The appropriate tool is O() notation, which is pronounced Big O.

e =1+ itz +

3 Big O Notation

Bishop, Fienberg and Holland (1975) make the following definition:

Definition 1 If {a,} and {b,} are two sequences of real numbers then a, =
O(by,) if |a,/bn| is bounded for large n.

The idea behind O() notion is to compare the relative size of {a,} to
{b,}, typically with {a,} being the sequence of interest and with {,} being
the comparison sequence. For example, if two matrices are of size NxIV then
adding the matrices requires N? operations and matrix addition is said to
be a O(N?) operation. Matrix multiplication requires N* operations and is
a O(N3) operation.

In the sin function example, suppose s9(z) is a function composed of the
sum of the first two elements of the Taylor series of sin(z). Then the error

term is

x®  z7

e(z) = sin(z) — sa(x) = S + ...
As z — 0, e(z)/z° is bounded so it is said that the error for the s,

approximation is O(z®) as z — 0. Adding more terms to the approximation



makes the error term go to zero even faster, and in practice only 4 or 5 terms
are necessary for good precision around z = 0.
There are several conventions to be aware of when using this notation.

1. Constants are ignored because the researcher is primarily interested
in the rate at which the series increases or decreases with respect to
certain well known sequences such as {nInn}, {n}, {v/n}, {1}, {n"1/2}.

2. Terms of similar magnitude can be combined because constants are
ignored. That is, O(n) + O(n) = 20(n) = O(n).

3. Terms of smaller magnitude can be combined with larger terms. For
example, O(n) + O(n'/2) = O(n).

The last two rules are only valid if the number of terms being summed does
not depend on n. The issue to avoid is having n terms of order O(1/n) and
claiming the sum is O(1/n) when it should be O(1).

4 Big O, Notion

In order to use the O() notation in a stochastic environment, Bishop, Fien-
berg and Holland (1975) makes the following modification to take into ac-
count probability. First define O,(1) as follows:

Definition 2 Let X, be a stochastic sequence. X, = O,(1) if for every
n > 0, there exists K(n) and n(n) such that if n > n(n) then

P{{Xa| < K(m)} >21-n.

Simply the definition means that for any 7, a K and n can be chosen such
that almost certainly X, is less than K when m > n. This definition means
that with arbitrary precision, X, is bounded. Sometimes X, is said to be
“bounded in probability.”

For example suppose X; ~ Gamma(5,.2) then X; = O,(1) because any
individual observation is bounded in probability, but W,, = Y% | X; # 0,(1)
because the sequence W, keeps growing with every additional element.

Definition 3 Suppose that X, /b, is Op(1). Then X, is Op(by,).

Of particular interest is the sequence €, = X,, — i1, where X, is the sample
mean using n observations from a population ‘with mean p and standard
deviation o. Since the standard deviation of X, is 0/4/n, as n — oo the



terms of the series get getting smaller and smaller. In order to use the
definitions for O,, first notice that

Xn_.u‘
a/vn

by the Central Limit Theorem. The important thing to notice is that this
quantity is bounded in probability and therefore

~ N(0,1)

Xn_.u'_
o/vn

Op(1)-

It follows that B
Xn—p= Op(a/\/ﬁ) = Op(n—lﬂ)’

because the constant o doesn’t affect the order of magnitude.

5 Characteristic Functions

In most introductory probability courses, students are introduced to the mo-
ment generation function (MGF) as a device to uniquely identify a particular
distribution. One problem with MGFs is that they don’t always exist. The
solution is to use the Characteristic Function, which always exists. The
characteristic function is the complex extension of the MGF and is defined
as ¢y (t) = E(eX), where i = —1.

The Characteristic Function shares many properties with the MGF. The
Characteristic Function can be used to uniquely identify distributions, and
can be used to show limiting results. If a sequence of functions ¢x, (t) —
¢x(t) then the distribution of X, is said to converge to the distribution of
X.

5.1 Cumulants

Taking derivatives of the moment generating function and evaluating at z = 0
is one method of generating the moments of a distribution. Taking derivatives
of the log moment generating function and evaluating at z = 0 generates a
sequence of numbers called cumulants. Cumulants are of interest because
there is a simple relationship between the moments of a distribution and its
cumulants and that the ith cumulant of a sum of random variables is the sum
of the ¢th cumulants. Clearly this is useful when describing the distribution
of sums of random variables.



In general, suppose that X is a random variable with characteristic func-
tion

dx(t) = B(e™) = [ €% f(z) da.
Provided that the MGF exists then the expansion

¢x(t) = exp {Z nn(z’t)”/n!}

n=1
exists. Taking the natural log of ¢x yields

K(#)=Y ——””(i,t s

=0 n!

where k; is the jth cumulant and K (t) is the cumulant generation function.
It is easy to show that
K(j)(O)
I‘Gj = ——.
77

Example. Consider X ~ N(0,1). Then

dz

] _ o—z?)2 oo pite—a?/2+12 /22 /2
#(t) = Be) = [~ el —daz= [* €

—00 vV 27T —00 v 2T

0o gt?/2+ite—a? /2 iy [ e(t+zi)?/2
dz=e /

= ¢ /2 — dz = dz
¢ e Vor o Vor
—(— i)2
P e_t2/2 *© M dx — 6'—t2/2‘
—00 vV 2

Now the cumulant generating function K(¢) is K (t) = log(4(t)) = —t2/2.
The derivatives evaluated at t = 0 yields k1 =0 and ko = 1. All the rest
of the derivatives are zero so x; = 0 for i > 3.

5.2 Properties of Cumulants

To show the important property that the cumulants for a sum of random
variables is the sum of the cumulants, consider S = X + Y, where X and
Y are independetly distributed random variables. Then #s(t) = px(t)py (t)
therefore Ks(t) = Kx(t) + Ky (t).

It also is important to consider the cumulants of the random variable X
where a is a constant. The cumulants kj(aX) are merely a’x;(X). This is
shown by

$ax(t) = dx(at) = K,x(t) = Kx(at) = ki(aX) = dk;(X).
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With these two rules, it is possible to examine the cumulants of the sum
and mean of n iid variables. Let S = Y7, X; and X = S/n. Then the
cumulants are k;(S) = 3 k(X)) = nk;(X) and

ni-1

In particular notice that the mean ;(X) = x1(X) and variance k2(X) =
k9(X)/n as is expected. Also it is useful to notice the higher order cumulants
of the mean are O,(n=¢1).

6 Cumulants and Moments

Consider the following series expansion of ¢,(t):

6s(t) = B(e™) = / ¢t f(z) dz

_ / {1 it + (igfc!)z + (ig)s + } f(z)dz

)22 13,3
= /{f(a:) +itef(z) + (&) Z,f(x) o ‘;f(w) +} dz
(it)°E(X?)  (it)3E(X?®)

21 + 3 + ... .
Since the cumulant expansion of ¢x (%) also involves terms of (it)7/j!, relat-
ing coefficients yields the following relationships between cumulants and the
central moments of the distribution:

=1+ itE(X) +

K1 = E(X)

ke = E(X?) - (E(X))

ks = E(X?®) —3E(X?)E(X)+2(EX)?®=EX -EX)?

ke = E(X*) —4E(X®E(X) - 3(E(X?))? + 12E(X?)(EY)? — 6(EY)*

= E(X - EX)* - 3(Var(X))2.

In this manner x; can be thought of as a polynomial of degree j of the
moments. The relationship can be inverted and the moments can be written
as a polynomial of degree j of the cumulants.



7 Miscellaneous Tricks

7.1 Inversion Theorem

Suppose that Y is a scalar random variable with characteristic function oy (t)
and cdf Fy(y) that is continuous and differentiable, then

fel) =5 [ ey (o) ar

For proof, see Billingly (2003, section 26). The inversion theorem is useful
because it is a convenient way to write a pdf in terms of the characteristic
function. Since the characteristic function is defined in terms of the pdf, it
is now possible to switch back and forth between the two with only minimal
effort.

7.2 Hermite Polynomials

Let ¢(x) be the standard normal pdf and ¢(z) be the standard normal char-
acteristic function. Define the 7** Hermite polynomial, H,(z) as

(21 (o)
() = 50y @y

While there is a general formula for an arbitrary Hermite polynomial (see
Pace and Salvan (1997, section 10.2). it will suffice to only deal with the first
several polynomials which are

forr=1,2,....

Hy(z) ==z, Hy(z)=2-1, H(z)=1"-3z, Hy(z)=1"—622+3,

Hs(z) = 2° — 10z* 4 15z, and Hy(z) = 2° — 152* + 4522 — 15.

8 Edgeworth Expansions
It is now possible examine how quickly
7 — n1/2 (X B ,LL)
o

converges in distribution to N(0, 1), where X is the sample mean of n ob-
servations and p and o? are the mean and variance of the distribution in
question.



Let ¢z(t) be the characteristic function for Z, and ¢(t) be the character-
istic function of the distribution being sampled from. First notice that Z has
characteristic function

]

And the cumulant generating function is

_ £, @) @0)(X)
2 6+/no3 24not

Using the inversion formula yields

+0(n3/?).

f2@) = 5 [ e hat)dt= 5 [ e ep{Ky(t)} dt

_1 / ” e~ exp {t2 + (it) s (X) + (i) s (X) + O(n“3/2)} dt

2m J- 2 64/no3 24no*

R TR Aol (it)°ps  (it)*ps | (it)°03 -3/2
_%/_e e 1+6\/_+24n+72n +0(n~%?)| dt,

where p; = £;(X)/0? is the standardized cumulant. This is a sum of terms
of the form o _ ,
(_1)1'/ (_1)re—ztze—t /2(,&'t)rc,
-—00

where c is a constant that does not depend on ¢. Notice that

o .
1Yo ®2 (;\T — itz
(—=1)"e"*(it) ( dz)"e .

If it is legitimate to exchange the order of integration and differentiation,
then the terms can be written as

Using the inversion theorem

/ e~ e P24t = p(z).
—00
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Taking derivatives yields terms of the form:

r dr _
c(—1) @ ©(2) = cH,(2).

Writing the first four terms of the sum and consolidating the remaining terms
into an error term, yields

fz(2) = ¢(2) [1 + 6.%l%(z) + 2’;—4nH4(z) + 7’;—3nH6(z) + O(n‘3/2)] .

Now transforming Z back to X yields

f2(z) = \/75@(2) [1 + %HB(Z) + ;T‘;—Hél(z) + %Hs(z) + O(n—:z/z)J

where z = -\/—ﬁ(—i;u—) and () is the standard normal pdf.

Example Suppose that a random sample of n observations is distributed
Xi ~ Exp()). The cumulants of the Exponential distribution are Kj=MN(j—
1)l Then examining the MGF, it is apparent that > X; ~ Gamma(n, \) and
that X ~ Gamma(n, \/n).

Therefore, in the Edgeworth expansion for X,

£i(X) _ ¥~ 1)

Pi= = ¥ = (j - 1)!
fz(Z) = \/Tﬁgo(z) [1 + %(23 —32) + %(z4 — 622 + 3)

(2% 6 4 2 ~3/2 }
+ o (2° — 152* + 4522 — 15) + O(n )

Given A = 1, below is two graphs comparing the actual distribution of the
mean and the normal and Edgeworth expansions. In the first graph n = 15,
and the second graph, n = 3.
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Exact versus Edgeworth and Normal Approximations

2
[}
- - Exact
v - - Edgeworth
[ = Norma!
2 K
=
o
=
S
=
T T T T T
0.0 0.5 1.0 1.5 2.0
x
Lambda=1, n=15
Exact versus Edgeworth and Normal Approximations
<
<
\
g .
\. — Exact
1 . - = Edgeworth
. + = Normal
= |
1
=
N
=
L ey s T .
=4 ~
\\ "
~-
T T T T T T
-1 o 1 2 3 4

x
Lambda=1, n=38

9 Discussion

In the first graph, the Edgeworth approximation is almost indistinguishable
from the true distribution, having accounted for the skewness and kurtosis
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of the true distribution, while the normal approximation does not fit as well.
However the second graph displays the negative aspect of the Edgeworth
expansion. Since the Edgeworth uses a polynomial multipled by a standard
normal, it is possible to get bimodal shapes, and even negative probability
densities. These problems can be address using Saddlepoint approximations
and are discussed in Pace and Salvan (1997).
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