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1 Introduction

Determining the appropriate sample size for an investigation, such as a clinical trial, is an
essential step in the statistical design of the project. An adequate sample size helps ensure
the study will yield reliable information. The motivation for writing this project is that a
study with an inadequate sample size is not only futile, it also will cause unnecessary eco-
nomic loss. An under-sized study can be a waste of resources for not having the capability
to produce useful results, while an over-sized one uses more resources than are necessary.
Furthermore, if an experiment involves human or animal subjects, sample size is a pivotal
issue for ethical reasons.

In this writing project, I will first introduce a few terms that are often used in statis-
tics: Type I error, Type II error, power. Under the frequentist approach, some examples
will be given on how to calculate sample size and power for continuous response and
binary response. For binary response, there are two branches, one branch in Section 4.1 is
for large sample size, another branch, Section 4.2, is for small sample size, where Fisher's
exact test is used. Also, two R programs for computing power and sample size are pro-
vided.

The later section offers another point of view, a Bayesian approach for sample size
determination, in which I compare the difference between frequentist approach and
Bayesian approach for sample size determination.

2 Basic Definitions

In a clinical trial of a new drug, the proportion of survival in the group using the ordinary
drug, m, and the proportion of survival in the group using the new drug, ms, are com-
pared. Second questions may arise: Is the new drug better than what's now available to
treat a specific disease? If it's not better, is it at least as good, perhaps while causing
fewer side effects? A question for a statistician could be, if the proportions of survival p,
and po from two samples, differ, before we assume that a real difference exists, would it be
possible that those two samples are actually from the same population and by chance pro-
duced the observed difference? Normally, we do not know the true population parameters
such as the true proportions m; and w. Then, we will have to make a decision based on
the ohserved statistical results,

2.1 Hypothesis Testing Procedures

L. Assume the null hypothesis ( i.e., Ho: 6; = 8, , implying no true difference, where 8
is the true population parameter and it can be a true mean or a true proportion).

II. Determine whether a two-tailed test or a one-tailed test will be made. If the alter-
native hypothesis (H.) specifies the direction of the difference ( e.g., Ha: 6; > 82}, it
is a one-tailed test. If the alternative hypothesis specifies only a non-directional dif-
ference or inequality ( e.g., H.: 61 02),it is a two-tailed test.
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HI. Choose o, the arbitrary level of significance ( usually 0.05 or 0.01).
IV. Calculate the appropriate test statistic, e.g., z or x? statistic.

V. Determine the probability of the observed value or of a more extreme value if the
null hypothesis is true, which is what we call the p-value.

VL. If p — value < o, we reject the null hypothesis and accept the alternative hypothesis
that a true difference exists. If p— value > &, we fail to reject the null hypothesis.

2.2 Type 1 Error

A type I error occurs when one rejects the null hypothesis (Hy) when the null hypothesis
is actually true. The probability of a type I error is the level of significance of the test of
hypothesis, which is denoted by «. In the medical research setting, Type I error is called a
false positive .

P(type I error) = significance level=c.

Back to the example mentioned above, a clinical trial of a new drug, the null hypoth-
esis might be the new drug is no better, on average, than the current drug, that is Hy:
m = . A type I error would occur if we concluded that the two drugs produced different
effects, when in fact there was no difference between them.

Using significance level a is based on the assumption that the null hypothesis is true.
Most commeonly the value of « is taken to be a=0.05 or in some cases o =0.01 is used. It
is highly unusual to have values of & > 0.05. If @ = 0.05, then in the long run 5 in 100
times the null hypothesis will be rejected when it is true. Similarly, if @ =0.01, only one in
every 100 times a type I error would occur.

2.3 Type II Error

A type II error occurs when one fails to reject the null hypothesis (Hy) when the alterna-
tive hypothesis (H,) is true. Again, in the medical research setting, a type II error is
called false negative .The probability of a type II error, denoted by 3, depends on : (1) the
true difference, for example, ( 8; — 63), (2) the sample size and population variance, and
(3) the level chosen for a ( the smaller « is , the larger g is).

P(type II error)=3.

Using the same example in section 2.2, a type II error would occur if it was concluded
that the two drugs produced the same effect, m = my, that is, there is no difference
between the two drugs on average, when in fact they produced different ones.

Intuitively, it is clear that 8 should not be large, but there is no general agreement on
the widespread use of a fixed # value. It is common to desire 8 < 0.2. A type I error is
often considered to be more serious, and therefore more important to avoid, than a type 11
error.
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2.4 Power

Power is the probability of rejecting the null hypothesis when the alternative hypothesis is
true.

Power=1-P(type Il error)=1— 3.

Power is always computed for a particular value of the alternative value. Power is
important because it indicates the chance of finding a significant difference when there
really is one. A study with low power is likely to produce no significant results even when
meaningful differences do indeed exist. Low power to detect important differences usually
results from a situation in which the study was designed with too small a sample size.
Studies with low power are a waste of resources since they do not adequately address the
scientific question. Ideally we want a test to have high power, close to 1.

3 Sample size determination for continuous response

Continuous responses can be found in many clinical studies. Suppose that a drug is
designed to lower cholesterol levels in the blood, the outcome, cholesterol levels (Y), in
this study is continuous response, because cholesterol level is a continuous variable. In this
section, we are going to falk about symmetric continuous response, more specifically, con-
tinuous response with normal distribution.

Here we specify the above example in statistical terms: the model we want to consider
involves two normal populations with the following parameters:

Sample Size | Variance | Mean
Average cholesterol level in control group (Y;) ny ot H
Average cholesterol level in treatment group (Y’g) Ny o3 2

which says ¥; ~ N(ui, 03/n,) and Yy~ N{pa, 03/n2), and samples of size nq and 75 are
taken, respectively. Thus, Yj—Ya~ N(p — pia, 0}/n1 + 03/na) by independence of sam-
pling is called the sampling distribution of the difference between means, which is the
statistic of interest. The null hypothesis, Hy: 1 = po, and the alternative hypothesis, H,:

H1F po-

3.1 To computer the power, 1 — 8, given sample size n4, ns

Power is 1 — 3, which is showed in the graph below:
To determine 8 , we must specify

1. ¢?, this value is ordinarily based upon previous study results ;
2. The probability, «, of a Type I error;
3. The magnitude of the difference § = yy — g2 to be detected; and

4. The sample size n,, na.
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If g — po=20>0, look at figure 3.1, the curve on the left is the curve of sample differ-
ences under the null hypothesis, Ho: y1) = g3, which is a normal curve N(0, o}/n; +03/ns).
The one on the right represents the distribution of differences p; — pp = 8 between our
samples, which is also a normal curve N(8, o/n; + 03/n;), where we assume 6 > 0 for
now. The area representing the value of /2 on the graphing is drawn in the right shaded
area. The area representing § is drawn in the left stippled area.

Figure 3.1

where ¥ = 21_q/2* \/oi/n1+ 05/n, , since Yo (1 —p) ~ N(0, 1) under H,: puy # po.

Voi/n +e3/n,

Suppose that U~ N(8, 6i/ni+ 03/n,). Consider a two-sided test under H,: 11 F po.

=P (U< a-ap* /ol olfn )=
B=P (Z< 21— asa*yfol/mtof/ng —6

=P Z< 21 app— e 3,
voifm +aging ) ( Ao/ Vf’1/ﬂ1+021/ﬂz) ( 1)

I_ﬁ:l_P(Zgzl—aﬂ"_ﬁz—fT_{/—“;) (3.2)
oi/ni+oéin

where 21.ap is the 100%(1 — /2) percentile. Similarly, the 100 (1 — 8/2) percentile.

If p3— pa= 0 <0 as showed in figure 3.2 below, then the calculation would be slightly
different.
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S
Figure 3.2
where y =z, * Voifng+ od/n,.
ﬁ:P(Uzza/Q* \/crf/nl-{—cr%/ng ) =
g=pPlz> Zajat\foi/n1+ ok ng — & —plz5y 8 (3 3)
- = Voifm +aifng # “af2 \/61§/n1+022/n3 !
&
1-8=1-P | Z2zy2— ——p=—— 34
~ g ( Zaf2 ﬁm) (3.4)

However, whether p;— pua=8>0o0r pu;—pa=48<0, aslong as |[§]’s are identical and
everything else is kept the same for those two cases, the power would end up with the
same value under the null hypothesis, Hy: pt1 = pto, and the alternative hypothesis, H,: y; #
fa-

One-sided test is referring to the alternative hypothesis H,: p1 > g2 or Hy: gy < g,
instead of Hg: pt1 # po. The computation for the power is very similar, the only difference
is that z,/o is replaced by z,. The reason should be intuitive with the help of Figure 3.3,
which is for the two-sided test under H,: g3 # po, and Figure 3.4, which is for the one-
sided test under H,: 1> pa.
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Figure 3.4
The power computed under one-sided test is:
s
~B=1-PlZ22p— e 3.9
1 ﬁ 1 (Z & Veiim +0’22/ﬂ.2) ( )

3.2 Factors effecting size of power (1 — 3)

A) Changes in significance level: e.g. According to formula 3.2, if o decreases, then

Z1-aj2 increases, [ increases, power decreases. By looking at Figure 3.5, if «

T decreases, then @ error is bigger. So, if everything else is kept constant, then the
smaller « is, the smaller power is.

Figure 3.5

B) Changes in sample size n: e.g. When sample sizes (ny and ng} increase,

—‘I‘/_M,n_—i_i:/_n: increases, P (Z K Zleafa — T\/T_‘:?;_};: decreases, by formula 3.2,

power increases. In Figure 3.6, when sample sizes increases, spread decreases. Fur-

thermore, their overlap is smaller, 8 is smaller. So, if everything else is kept con-
o stant, the larger sample size 7 is, the larger power is.
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Figure 3.6

C) Changes in variance: e.g. When the variances (0} and o¢%) are smaller,

Tﬂ%%f—;; increases, P (Z K Z1—qp — ?J_’Tj:?—ﬁ ) decreases, by formula 3.2,

power increases. We still use Figure 3.6, when the variances decreases, curves have
less spread. Furthermore, their overlap is smaller, 8 is smaller. So, if everything
else is kept constant, the smaller variances are, the larger power is.

. . ) L a 5 .
D) Changes in size of difference: e.g. If 1 — ps = § increases, Wz Ty increases,

P (Z K Zl—af2 — 5 ) decreases, by formula 3.2, power increases. In

Vai/m+as/ng
Figure 3.7, curves are further apart compared to original curves and 8 is smaller.
So, if everything else is kept constant, power (1 — B) is larger when the difference &
is larger.

Figure 3.7

E) One tailed versus two-tailed tests: power is greater in one-tailed tests than in com-
parable two-tailed test.
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Figure 3.8

3.3 Compute sample size n given power

3.3.1 Computing sample size n for known o2
To determine the sample size, we must specify
1. o2, typically based on previous study results;
2. The probability, o, of a Type I error;
3. The magnitude of the difference § = y1; — gy to be detected; and

4. The power, 1 — f, or equivalently the probability of a Type II error, .

Suppose that both population in studies are sampled the same number of times, n =
n = ng. For a two-sided test, to compute sample size 71, we just need to convert Formula
3.1 in section 3.2,

Zl—ga* crfr‘i aafi—
,@:P(Zg a2y R o J) (3.6)

Veifi+ogfi
T Ty PR R
= 2% \/01[Ti+ 03 fii =21 oo \/OL/5i + 0%[Fi — &

The required sample size per group is :

{of+d§)(21—a/2+zl—ﬁ)2 (3.7)

=i = =

However, to get the above sample size 7 result, we have to assume that o? and % are
known.

3.3.2 Compute sample size n, when o2 is unknown

If we go on to a more realistic situation in which the population standard deviation (o4
and o3) are not known, and we estimate the sample size from the sample standard devia-
tion (s; and sy).

We assume that the unknown population variances of = 0% = 02, which makes it pos-

. . . . . 20%(2;_ o _g)?
sible to use t-Distribution. Also, we assume mM=ny =9 = — (= §+21 2 , the pooled
sample variance s? is an unbiased estimator of o2,
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11— 1)57 + (np — 1)s3 % + 53
s?,z{ : nls_:nz(?g S S (38)
The two-sample ¢ statistic:
£ = -V —(m—pg) _ (G-T0) - (m—m) (3.9)

Sp ;I'-l‘; 33’\/31:

Referring back to Figure 3.1, the curve on the left is the curve of sample difference
under the null hypothesis, Hp: g3 — ps = 0, which is the Student’s t-Distribution curve
t(2i-2) - The one on the right represents the distribution under the alternative hypothesis,
Hg: gy — po = 6 > 0, which is the non-central Student’s t-Distribution curve, ¥(2i—z 1),

(52

where A= —.

2ap
i

Suppose that T} ~ toi—2), To~ baii—2,2)-
Consider a two-sided test here, in Figure 3.1, Y=%1-a/22i-2)* Sp/1/n1+ 1/ng.
1-af2,2i-2)*Sp/1/m1+1fna—4
— < {1—ajf2,2 2) P
p=F (T2 = sp/1/n1+1/ng )
The power is:

1_;3=1—P(T2

< Y1-af2,20-2)%8p/ 101+ 1/n —-6)
-y

spy1/ny+1/ng

=1-P (Tz < t“haﬁﬂ:f/);/:) & _6) (3.10)

You can find t(1.a/224.2) by using R code: qt(l-o/2, 27i-2). Note that T5 ~ H2ii—2,7)
since A = ;‘-Y—;— is related to sample size and the desired sample is unknown yet. To solve
2:p

f
this problem, based on Formula 3.7, we can use an approximate sample size ny =ny =17 =

2 ]~ 2 - - . . .
2 (Zl'“§§+ 8 s the starting approximate sample size and plug this approximate sample

7 back into Formula 3.10 for A, s, and {1—-a/2,2:—2). We can compute the power with the
. . . t(l_ungﬁ _2)$5p\/2/ﬁ —4 -
help of R code for noncentral t-Distribution, pt( TR , 2782, A).

If the computed power is lower than the given power, we keep on increasing the
approximate sample size for 1 unit each time until the computed power is higher than the
given power. For the case that the computed power is higher than the given power, we
keep on reducing the approximate sample size for 1 unit each time until the computed
power is lower than the given power, then the desired sample size would be that stopping
sample size add 1.

3.4 Factors increasing sample size
Based on Sec. 3.2, by comparison, sample size changes as a function of:

1. Power (1 — B): sample size increases-as the power increases.
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2. Variation in outcome (o?): sample size increases as variation in outcome increases.

3. Difference (effect) to be detected & : sample size increases as this difference
decreases.

4. Significance level o: sample size increases as the significance level decreases.

5. One-tailed versus two-tailed tests: sample size is smaller in one-tailed tests than in
two-tailed tests.

4 Sample sizes determination for binary response

When a response takes on one and only one of two possibilities, it is cailed a binary
response. In many clinical trials, a patient will have of two possible outcomes, such as
dies/survives, the antigen presence/absence, tumor detected /non-detected. One wishes to
compare proportions as estimated by samples from two populations to see if the true pop-
ulation parameters might be equal, where proportions could be the percentage of rats
developing tumors under diets involving different doses of a food additive; or the per-
centage of patients experiencing pain relief by taking a drug and placebo trial.

4.1 The Normal Curve as approximation to the binomial distribu-
tion for large samples

Suppose that the first binomial variable Y;, which represents the control group, is of
size 7y with survival rate m;, which is estimated by the sample proportion P1. The second
binomial variable Y,, which represents the treatment group, is of size ny, with survival
rate 7y , which is estimated by the sample proportion ps. It is of our interest to compare
the survival rates by taking the difference p; — p, so that we could get some information
about whether the treatment have a certain effect on the survival rate.

The mean and variance of the difference p, — py are given by
E(p1— pa) =m —my, (4.1)
var(p; — pg) = Wl(ln: )y melom), (4.2)

na

By Central Limit Theorem, for large n; and ny, p; and P2 are approximately normally
distributed, which implies the difference (p; — p2) would also be normally distributed, thus
under the assumption that n, and nj are large enough, (the common rule of thumb, n,m,
m(1 —m), namy and na{l — my) all greater than 5),

pipa—(m—m)
\/wl(l — %1} + mof) — na} =z (4.3)
ny no
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is approximately N(0,1).

4.1,1 Computer the power
There are four quantities needed to compute the power:
1. @3, the proportion in the first population.
2. my, the proportion in the second population.
3. ny, ng the number of observations to be obtained from each of the two populations.
4. The significance level a at which the statistical test will be made.

Based on Formula 3.6, for one-sided hypothesis test, where H,: m = mp and Hy: my > w9,
the power (1 — ) is :

o A—_1_ zl_u-\/171(1—'#1}/?‘11+1T2{1——1T2]/n2—6
1-p=1 P(ZS V(L — w1} /ry + ma(l —m)/ng ) (4'4)

where d=m; —wy > 0.
4.1.2 Finding sample sizes needed for testing the difference between propor-
tions

It is common to suppose that both population in studies are sampled the same number of
times, n=n; =n3. To determine the sample size n, we often specify my, me, o and §.

H : 22 o _a)?
Recall in section 3.3, Formula 3.6 : n= 2! ;g-f-z; 8?

Using the same approach, for one-sided hypothesis test, an approximation for n here
is:
;. fz_at:m_pg 2 1 1— A5
n= |~ ) (m(l —m) +ma(l — o)) (4.5)
For two-sided test, we just need to change z_, in Formula 4.2 into Z1-af2; the rest
stays the same.

7= (i‘ﬁ-‘—"ﬁ) 2(7r1(1 — ) + (1l — my)) (4.6)

W — g

Ezample 4.1 : Suppose the investigator wishes to do a study on the drugs for hyper-
tension. The design considered is that hypertensive patients are assigned to either treat-
ment and placebo randomly. We compare the proportions (m; and ms) of patients who are
still hypertensive in each group by taking the difference of the two proportions (m; — 7).
Suppose that we use a two-tailed test with a 0.05 significance level, where H,: 1y = 7y and
Hy: my > mp. How many subjects would be required to have 90% power of detecting a dif-
ference in the proportions (m — ) of 0.04?
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Suppose that from other studies we know that an estimate of the proportion of
patients in the placebo group still hypertensive {(m) is 0.9. Thus, we have that 3 = (.86
because 7 — w9 = 0.04.

The required sample size in each of the two groups is:

=+ (1.96+1.282)*(0.8 X 0.1 +0.86 x 0.15) —~
i = oD =1438.6 %1439

Thus, more than 2878 hypertensive patients would need to be enrolled in this parallel =

groups study.
If the power was reduced to 80%, given everything else fixed, then

= _ {1.96+0.841)%(0.9 X 0.1+ 0.86 X 0.15) —~
A= 0037 = 1066.5 21067

1t is easy to notice that when the power decreases, the required sample size decreases.

Now, we keep the power to be 80% still, but we are detecting a difference (§) of 0.25,
where 73 =0.9 and 7= 0.65, then the corresponding sample size is:

= (1964 0.841)%(0.9% 0.1+ 0.65x 0.35) - ~
= 0.2 =39.9240

We need a sample size of approximately 80 subjects in total to detect a very large
effect (a difference of 0.25) with 80% power, which is very much smaller than the sample
size (2134} to detect a small effect (a difference of 0.04).

4.2 Fisher’s exact test for small samples

In section 4.1, we use central limit theorem to approximate the distribution of P1 — P2 a8
normal distribution, given the sample size is large enough. While in situations where a
large sample approximation is inappropriate, we may prefer to use Fishers Exact test to
return exact one-tailed and two-tailed p-values for a given frequency table. Then based on
the exact p-value, we can determine whether the proportions of those falling into each cat-

egory differ by group.

Lzample 4.2 : In clinical trials, survival/absence of a certain disease could be consid-
ered as a success, while death/presence of a certain disease could be considered as a

- failure. Assume that the control group has n,; successes in ny; + nyg trials; treatment

group has ngy successes in ng + ngy trials. Let . = n1 -+ nyp. Similarly define ng,
7.1, and n. Let n. =nqyy + nys + ng + ngo. Writing the table with row and column totals

gives:

Success { Failure
Control group n1 19 ny.

Treatment group{ ng Tigg Ty,
n1 na TL..
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Let X represent the total number of success, X, represent the number of successes in
control group, and X» represent the number of successes in treatment group, where X ~
Bin(n., 7}, X1 ~ Bin(n,, 71} and X3 ~ Bin(ng, 7). Further, Fisher's exact test assumes
that both row and column totals are fixed, which means n;, ng, .1, and n.g are fixed, but
not 111, Mg, N1, and ngy. Let the null hypothesis H,: w; = m and the alternative hypoth-
esis H,: > mo.

The probability distribution of n;:

Gy (L —m) "™ "5 (L g R

) L C Bt ) i

P[n11=klﬂ'=ﬂ'1=ﬂ'2]=
= Plny = klm =g = )220/ () (4.7)
for k<ny, k<nyand n1—k < ny.

The probability distribution of 741 is called the hypergeometric distribution.

A p-value represents the probability of obtaining values of the test statistic that are
equal or greater than the observed test statistic. The exact p-value for this test is:

— . (?1‘) (n:zii)
P value = Ei:k T (48)

1.

where k is the observed value. If n; <n3, then 37", should be changed into Dy -

A p-value close to zero suggests that we reject the null hypothesis H,: M = Ty, and
there is enough evidence that the difference (m = ) exists. While a p-value close to 1
would suggest that we fail to reject the null hypothesis H,: 7 = .

Most statistical software programs will compute Fishers Exact test. There are also
several web pages that will compute this test. Here's an example:
http:/ /www.psych.ku.edu/preacher/fisher/fisher.htm!

4.2.1 Computing power by simulation

When sample size is small, one way to compute the power is to find ont the critical value
¢ under given « level and the hypergeometric distribution, then also, based on the distri-
bution under H,: m; # 79, we can could compute the exact power with the critical value c.
For more information, see: Suissa and Shuster (1985).

Another way to compute the power: we can use simulation to compute the power
according to different values of =y (the probability of success in control group), w2 (the
probability of success in treatment group), n, (the fixed total number of control group), no
(the fixed total number of treatment group), a (the significance level) and N ( the total
number of simulations creating tables for Fisher's test).
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The brief explanation for Program 1 (fisher.power) is the following:

First, we randomly generate the number of successes a/b in control group/treatment
group based on that @ ~ binomial(n;, 7;) and b~ binomial(ng, 7). Then we create a 2 x 2
table of those numbers based on fixed margins and use Fisher's test to obtain p-value.
The above simulation is repeated up to N times, where you could define how large N is
when you apply Program 1. Provided that #; # w2, we count how many times H,: 7, =7 is
rejected when H: m; = is false, which is denoted by k in the R code. Thus, power can
be calculated by .

In Figure 4.1, we suppose that both populations are sampled the same number of
times, n =n;=mng, and N = 500.

Power Analysis

1%,

02 ¢ 05 O 08 =

03 + 06 « 09 =

04 « 07 » 0+

@ =00t m =05 @ =005 my =05

10
0.8 L
06 - =
04 - T -

1.0
-~ 0.8
- D&
0.4

power

Y - 02

I o A b

o o — -2
- 0.0

Figure 4.1

Based on Figure 4.1, we could conclude that:
1. Given everything else fixed, when « increases, power increases.

2. Given everything else fixed, when the difference § = @7 — my increases, power
increases,
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3. Given everything else fixed, when the sample size n increases, power increases.

4.2.2 Finding sample sizes for given power

e

Just like computing power by simulation, we could also compute sample size by simulation
according to different values of power, m (the probability of success in control group), mg
(the probability of success in treatment group), a (the significance level) and N ( the total
number of simulations creating tables for Fisher's test). Here, we need to assume the
unknown sample size to be small and for both populations the sample size is the same.

The brief explanation for Program 2 (fisher.ssd) is the following:

Based on the given power, «, y, 7, although the sample size is small that it is not
appropriate to use the Central Limit Theorem to compute the sample size directly, we
could still use normal distribution to get an approximate sample size n by using the for-
mula 4.2:

A (w)z(ma _ )+ ma(l— ),

LS Bl L}

After obtaining the approximate %, we use Program 1 (fisher.power) to keep on com-
puting power until we achieve the power that is equal to or just above the given power. If
you reduce the sample size for 1 unit, then the power would be smaller than the given
power. In Figure 4.2, we assume that power is 0.9, &=0.05, 7; and my vary.

1,=01 ;=05 =02 5=08
(=]
o a =] a
= e o
¢ ¢ ® 2 ° s
g | ° 2
& ]
o 3 o o
3 a z T
o (=] o =]
& = o
o =1 o
w 8
= 2 )
a T T T [ AN | S T T T
22 23 M4 35 ®H I W8 g 10 11 12 13 14 1% &
sample size semple size
31=0.5 7{2=0.B ﬁ|=D.2 52=0.4
-4 o o~ o
o o _}
@ ] £
o Q 0O -
. . 8]
g Ed o o % d_ @
3 -
8 ° @ 8 o
o o ¢
- o a
] o w0 o
B 4 bl [:]
o T T T T < T 3 T T ¥
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In Figure 4.3, we assume that power is 0.6, o =0.05, m; and my vary.

Figure 4.2
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In Figure 4.4, we assume that power is 0.6, « =0.01, 7y and 7y vary.
We could conclude that:

1. Given everything else fixed, when power increases, sample size increases.

2. Given everything else fixed, when the difference § = m; — 73 increases, sample size
decreases.

3. Given everything else fixed, when « increases, sample size decreases.

5 Bayesian sample size determination

In the previous sections, for a frequentist, it is the goal to seek the smallest sample size
that is sufficient to achieve a desired power at a specified significance level. However, a
full Bayesian approach to sample size determination (SSD) has a different goal --to
minimize the expected posterior loss. For hypothesis testing, the loss function is 0-1 loss
function, in which the loss is 0 only if the hypotheses are both correctly classified, i.e., we
fatl to reject the null hypothesis when the null hypothesis is true, or we reject the null
hypothesis when the alternative hypothesis is true, otherwise, we set the loss to be 1.
Since 0-1 loss function assigns the equal loss on both types of error, Bayesian SSD is
aiming for minimizing the sum of Type I error and Type II error.

5.1 Fitting and sampling priors

In the frequentist approach to 8SD problems, it would be of interest to investigate the
power of the SSD procedure when the true parameier assumes some particular values.
But, for a Bayesian, it would not be considered to be satisfactory.

All Bayesian model fitting exercises need a prior distribution for the unknown parame-
ters in the model. This is the prior distribution which would have been used for model fit-
ting if the sample data were available, which is called the fitting prior. The fitting prior is
to be used to obtain the posterior distribution for making inference. The fitting prior is
often assumed to be non-informative, thus it does not influence the sample size much.

Although from a Bayesian perspective the unknown parameter is assumed to be
random, to perform power analysis in a Bayesian framework, it is natural to assume that
the parameter follows an informative prior distribution concentrated around some specific
values of the parameter which are of particular interest to the practitioner. This is called
the sampling prior, used after full consideration of all the available prior information. The
sampling prior addresses the sensitivity scenarios, such as what if a small change in a
parameter results in relatively large changes in the outcomes. And if that is the case, then
the parameter has to be determined very accurately or that the alternative has to be
redesigned for low sensitivity. Unlike common fitting priors, the sampling prior has a large
influence on the optimal sample size, similar to
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5.2 The sum of Type I error and Type II error

Let X™ = (X, .., X} denote a random sample size of n from a population with density
f(z}f) and let 7(#) denote the prior distribution for the unknown parameter 8. Let
7(#)z) denote the posterior distribution of 8 given the observed sample z(™,

We also set up the hypotheses: H,:8 € ©, versus H,: 8 € ©,, here we shall take ©, =
{0:0<6,} and ©,={0:0>6,}.

Let A; denote the action of accepting H; for ¢ = 0, a and L(#, 4;) denote the loss for
taking decision A; when the @ is the true value. The Bayes decision rule, denote by 67, is
to select A, if the average posterior loss under A, is less than that under A,, i.e. if

Jo, L6, A)n(Bla™)do < [, L6, AJw(8]=™)dp - (5.1).

Under some parametric assumptions, it is often possible to find a suitable function
g(z™) such than inequality (5.1) holds if and only if g{z®™) < k™(n), where k™(n) is the
value of g(z™) for which equality holds in expression 5.1.

Due the distinction between the sampling prior (7)) and fitting prior (i), the
Bayes decision risk will have the form

r(7®, 85" = [, L(8, A)P{g(X®™) < k"U)(n)]0 }r ) (6)d8 +

Jo, L0, A)P{g(X™) 2 k™)(n) |6} =)(0)do (5.2).
Assume the constant loss function L{#, a,) = L, for § > 6, and L{0, A,) = L, for 8 <6,,
the ratio of losses, Lo/ L,, or, n= LOI:L;

We can simplify formula 5.2 into the following form:

r(@®, 877) = Lo| [, PLo(X™) <k*D(n)|6}x(0)db
+22 [, P{g(X) > 6" (n)| 17 (6)do] (5.3).

Also, note that fea P {g(X) < k™N(n)|0}7)(8)d0 is the probability of Type I error,
o, and feo P{g(X™) = k™U)(n){0}2)(0)d8 is the probability of Type II error, 5. Based
on Formula 5.3, we will get:
r(m',657)/ Lo=a + 128 (5.4).

The sample size determination (SSD) problem would be considered as one of finding
the minimum » such that

r(m®, 55/ L,< M(n) (5.5).

for a given values of 5 and M(7).

If the losses are equal for the two possible wrong decisions, then I, = L, so that n=1.
The equality 5.4 would be o+ 8 < M(7n). Thus the quantity to be bounded for the SSD is
the sum of two error probabilities. M(7) is sometimes called the total error rate, and
Sahu (2006) list a table including M(n).
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Sahu, S.K. {2006} said that in some experiment with 0.25, 0.15 and 0.1 as values of
M (), which can be interpreted as follows: the test of H, is carried out at the 5% signifi-
cance level and it is required to have 80%, 90% and 95% power respectively.

5.3 A clinical trial example

Fayers (2000) discussed the SSD problem for a trial for surgery for gastric cancer where 2~
radical surgery (new treatment) is compared with conventional surgery ( standard treat-
ment). The log-hazard-ratio of death (Xj, ...., X;) is the outcome of the trial and it fol-
lows an approximate normal distribution with mean # and standard deviation & = 2; see
Spiegelhalter (2004), page 198, for justification of this assumption. The values of § > 0
favor the new treatment.

5.3.1 Frequentist Approach

For frequentists, the SSD problem is to determine n such that the test of simple null
versus simple alternative, i.e.:
H,:8=0 versus H,:8=10,
where 8, is a fixed value specified as the alternative, at 5% significance level achieves
90% power. The new surgery will be selected if the mean log-hazard-ratio is positive.
Let us choose 8, = 0.39, Under H,: 8 =0, we have X~ N(0,2/+/7) . Based on Formula
3.7, we have
— sara/yR—8Y _ ( L )
p=pP(2< )=P(2<a0—312 )=

oI
0.39
1 —90% =P (Z$z1_5%~wn— ) -
0.39
~1.28=165— 2%
n =226

5.3.2 Bayesian approach

As the form of the hypotheses mentioned in Section 5.2, for this example, our hypotheses
are: Hy: 0 <0 versus H,: 8> 0. We also assume that L,= L,=1, that a wrong decision in
either direction will occur the same amount of loss.

Now we still want to consider that the same example mentioned in this section. Fayers
et al. (2000) reported prior opinions of 26 surgeons who were experienced in gastric
surgery . By fitting a normal distribution on an appropriate transformed scale Spiegel-
halter et al. (2004) concluded that the surgeons’ opinion can be summarized by the
N(0.12, 0.19?) prior distribution for #, which is an enthusiastic prior the new treatment
(radical surgery). This corresponds to ny = 111 approximately since 72 = a%/n,, where g =
2. Sahu, S.K. (2006) says that when #, = 0.39, the sample size that we obtain by using
the Bayesian method proposed is 287, given that M(z) = 0.15.

As discussed in section 5.2, for hypothesis testing, the loss function is 0-1 loss function.
SSD problem would be considered as one of finding the minimum n such that

r(#®,657) /Lo M(n) (5.5).
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For the particular example mentioned in this section, I simply wish to verify the result.
Using 7(m(®), 6,’{(”) equation in Appendix A of Sahu, S.K. (2006), also, assume that the fit-
ting prior and the sampling prior are identical,

Udy N _o2:80—ads  Byy  22,0-0%; 012 0.48
kT (n) = ?( PO ?g') - 37( X% 0197/ T “0036im
r(x),857)/ L,

oo kﬂ'(f) n) — s — U {bo—ps) k,r(.f} ) — fy —Tyu
= f(&a—;—ls) @{ {0—)/\/; ‘?S(u)du"'_f_og’ 1-9 (a}/\/:; d)(u)du

0,48
o0 —_—'—-,;-—0.12~D.19u
= f_0.631579 ‘I’{ R TN }qﬁ(u)du +

_ 048 oo nign )]
f:::6315?9 [1 - & { 9.0361:12/\3;2 019 }J ¢(u)du

The following are some results we found by using R , when n = 287, ({9, 6:{0)) /Lo=
0.0908953+0.05961983=0.1505151 & M () = 0.15, while when n = 290, r(x‘%), 67)/L, =
0.09042767=0.1498407 < M(n) = 0.15, which are consistent with the results mentioned in
Sahu, S.K. (2006).

6 Discussion

In this article, we have discussed simple methods of estimating the SSD for two types of
variables under Frequentist approach and Bayesian approach. Theoretically, it is obvious
that the larger samples are better. But practically, it is also true that resources and
finances have a major influence on the final sample size chosen, for example, health insur-
ance and managed care providers often do not cover the patient care costs associated with
a clinical trial. If participants have to pay for a certain treatment, tests, and other
charges, then they might stop taking part in this clinical trial due to cost issues, which
will directly influence the final sample size chosen. On the other hand, if a specified orga-
nization will sponsor a clinical trial, then there should be more people volunteering for
this clinical trial.

To avoid unnecessary loss due to over-sized or under-sized sample size , it is very
important to choose the power, the significant level or the total sum of Type I Error and
Type 11 Error.

Typicaily, calculated sample size should be inflated by 10-20% because possible
dropouts will happen in these groups during the process of study. Thus, although the
design of an experiment is simplified for the purposes of estimating sample size, it should
be noted that using a more sophisticated design and statistical analysis usually provides
more power to detect a difference.
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APPENDIX

APPENDIX : R CODE

HHEENHEEEE Program 1 #HHHBHHAHIH
gt fisher :pover H##EAEE
fisher pover <— function(pl; p2; nl; n2; alpha; N)
#p1is the probability of success in groupl
#p2 is the probability of success in group2
#p 1 must not be equal to p2; which will guarantee Ho is false
#n1 is the fixed total number of groupl
#n2 is the fixed total number of group2
#alpha is the significance level
#¥ is the number of simulations creating tables for fisher :test
{
k=0
if (pl == p2) stop("p1l cannot equal p2")
for (i in1: N)
{
a =rbinom(i; nl; pl)#a is the number of successes in groupl
b =rbinom(1; n2; p2)#b is the number of successes in group?
table =matrix{c(a; b; "l —a; n2 — b);nr=2; dimnames = list{(Group=—c¢
("Groupl”; "Group2") ; Results = c (*Success"; "Failure") N
#table for fisher:test
p = fisher ;test(table)$p ;value
if (p <alpha)
k=k+1
}
power =k/N
#k is the number of times to reject Ho when Ho is false
#k/N is the probability of rejecting Ho when Ho is false; which is power
POHEI‘

}

#Hicreating original data set####R#H#
alpha= :01
pi=0.1
for (n1inc(6; 8; 10)){
for (deltaini: 98/10) {
p2=pl+delta
cat{c (alpha; pl; p2; nl; fisher:power(pl; p2; nl; nl; alpha; 600)); "\n"}

}

}

alpha = :01
ri=0.2

tor (nlinc(6; 8; 10)){
for (delta ini: 8/10) {
p2=pl+delta
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cat(c(alpha; pl; p2; nl; fisher:power{(pl; p2; nl; nl; alpha; 500)); "\n")

}
}

alpha = :01
pi=0.5
for (nl1inc(6;8;10)){
for (delta in 1: 5/10) {
P2=p1+delta
cat(c(alpha; pl; p2; nl; fisher:power(pi; p2; nl; nl; alpha; 500)}; "\n")
}
}

alpha = :05

pl1=0.1

for (nlinc(6; 8;10)){
for (delta in 1: 9/10) {
p2=pl+delta
cat(e(alpha; pi; p2; nl; fisher:power(pi; p2; ni; ni; alpha; 500)); "\n")

}
}

SN alpha = 0.05
p1=0.2
for (nline(6; 8; 10)){
for {(delta in 1: 8/10)
{p2=p1+delta
cat{c{alpha; pl; p2; nl; fisher:power(pl; p2; nl; ni;alpha; 500)); "\a")

}

}

alpha =0.056
p1=0.5

for {nlin c{(6;8; 10)){

for (deltain 1: 5/10)

{p2=p1+delta

cat(c{(alpha; pl; p2; nl;fishor:power(pl; p2; nl; nl; alpha; 500)); "\n")

} .

}

i Pover Analysis Graph Program###isis

outputl = read:table(file:choose(); head = T)
##file name is called "original data"
require(lattice)

## delete the the top stick on the graph
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tmp < — trellis:par:get("axis:components®);
top$topdtck < —0
trellis:par:set{"axis:components"; tmp)
## make graph backgroud white
trellis :par :set(col :whitebg())
myStrip < — function(which:panel; :::){
ltext(:25; :5; expression(alpha))
ltext(:4; :5; paste("="; ¢(:01; :05) [ which:panel{1]]))
ltext(:6; :4; expression{pil[1]))
ltext(:75; :5; paste("="; c(:1; ;2; :5) [which:panel[2] 1))

xyplot(power ~n | factor(alpha) factor(probl); group = prob2;

type = "o"; auto:key = list(title = expression(pi[2]); columns = 3);

data = outputl; lwd = 2; strip = myStrip,; main = "Power Analysis"; scale = list(
@ = list(alternating=c(1; 1)}))

#HHEHHHE Program 2 #HERHHHEHHE
#HBHEEEHNR fisher tasd  HHEREHERE
fisher:ssd < — function(power; p1; p2; alpha; ¥){

fipower is 1 — type I1 error

#sd is the standard deviation for the normal approximation

#ipl is the probability of success in groupl

#p2 is the probability of success in group2

#p 1 must not be equal to p2; which will guarantee Ho is false
#alpha is the significance level

#¥ is the number of simulations creating tables for fisher :test
#Use normal approximation to estimate the sample sizen =nl=n2

delta=pl —p2
#delta is difference between the p1 and p2
Var= pl (1 - pl) + p2 (1 — p2)
n = round{(Var (qnorm{(1 — alpha/2) + qnorm(power))~2/(delta~2})
#print(a)
powerO =fisher:power(pl; p2; n; n;alpha; ¥)
sadTable = ¢ (n ; power()
#print (power0n)
if (power0 <pover){
while (powerD <power){
n=n+1
powerQ = fisher power(pl; p2; n; n; alpha; N)
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ssdTable = rbind{( ssdTable; c¢(n ; pover())
#print (power()

}

return{list(n = n ; ssdrtabla = ssdTable))

}

else{
while (power0 > power)
{n=n-1

power( = fisher:power(pl; p2; n; n; alpha; ¥)
ssdTable = rbind( ssdTable; c(n ; powser(})
#print (power0)

}

list{n =n + 1; ssdtable = ssdTable)
}
}

## Plotting the sample size based on given power#iiid
88d0.9:

par (mfrow = ¢ (2; 2})

plot(fisher:88d(0.9;0.1; 0.5; 0.05; 200)$ssdtable;
main = expression(pill] ==0.1; pi[2] ==0.8);

xlab = "sample size®; ylab = "power"”;

col:axis = "sky blue"; col:lab = "thistle”)

plot{(fisher:ssd(0.9;0.2;0.8; 0.05; 200)$ssdtable; m
main = expression(pi[1]l ==0.2; pi[2] ==0.5);

xlab = "sample size"; ylab = "power";

col raxis = "sky blue"”; col:lab = "thistle")

plot(fisher:ssd(0.9; 0.5; 0.8; 0.05; 200} $ssdsable;
ma

main="p1=0.bvs p2=0.8";

xlab = "sample size"; ylab = "power";

col :axis = "sky blue”; col:lab="thistle")

plot(fisher:ssd(0.9;0.2;0.4; 0.05; 200)$ssdtable;

main="pl=0.2vs p2=0.4%;
xlab = "sample size" ; ylab = "pouwer";
col :axis = "sky blue®; col:lab= "thistle")

ss5d0.6:

par(mirow = ¢ (2; 2})

plot{fisher:ssd(0.6; 0.1; 0.5, 0.05; 200)§ssdtable;
main="pl=0.1vs p2=0.5";

xlab = "sample size"; ylab = "power";
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col :axis = "sky blue"; col:lab = "thistle")

plot{fisher :ssd(0.6; 0.2; 0.8; 0.05; 200)$ssdtable;
main="pl1=0.2vs p2=0.8";

zlab = "sample size"; ylab = "power";

col:axis = "sky blue”; col:lab = "thistle")

plot{fisher:ssd(0.6; 0.5; 0.8; 0.05; 200)$ssdtable;

main="pl=0.6vs p2=0.8";
xlab = "sample size"; ylab = "power”;
col ;axis = "sky blue" ; col:lab= "thistle")

plot{(fisher:ssd(0.6; 0.2; 0.4; 0.05; 200)$ssdtable;
main="pl=0.2vs p2=0.4";

xlab = "sample size"; ylab= "power";

col:axis = "sky blue"; col:lab = "thistle")

ssd0.01:

par(mfrow = c(2; 2))

plot(fisher:ssd(0.6;0.1; 0.5;0.01; 200)$ssdtable;

main = expression(paste(pi[1] ==0.1; " "; pi[2] ==0.5));
xlab = "sample size"; ylab = "pover”;

col raxis = "sky blue"; col:lab = "thistle")

plot(fisher :ssd{0.6; 0.2;0.8; 0.01; 200)$ssdtable;

main = expression{paste(pi[il ==0.2; " "; pi{2] ==0.8}};
xlab = "sample size"; ylab = "power";

col raxis = "sky blue"; col:lab = "thistle")

plot(fisher :ssd(0.6; 0.5;0.8; 0.01; 200)$ssdtable;
main = expression(paste(pif{1] ==0.5; " "; pi[2]1 ==0.8));
xlab = "sample size"; ylab = "power";

col raxis = "sky blue”; col:lab= "thistle")

plot{fisher:ssd(0.6;0.2;0.4; 0.01; 200)$ssdtable;

main = expression(paste(pill1] ==0.2; " "; pi{2] ==0.4));
xlab = "sample size"; ylab = "power";

col:axis = "sky blue”; col:lab = "thistle")

##R code for Bayesian SSD

n =287
k={4/n) (—12/19"2)

integrandl <— function{u) {pnorm((k —0.12 — 0.19 »}/(2/sqrt(n))) dacrm{u)}

integrate(integrandl; lower = — 0.631579; upper = Inf)

integrand2 < — function(u) {(1 — pnorm((k — 0.12 — 0.19 u)/(2/s5qrt(n)))) duorm(u)}
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integrate(integrand2; lover = — Inf; upper = — 0.631579)

n =286

k=(4/n) (- 12/19°2)

integrandl < — function(u) {pnorm((k — 0.12 = 0.1% u)/(2/sqrt{n))) dnorm(u )}
integrate(integrandl; lower = — 0,631579; upper = Inf)

integrand? <— function(u) {{1 — pnorm({k — 0.12 — 0.19 u)/(2/sqrt(n)))) dnorm(u )}
integrate(integrand2; lower = — Inf; upper = — 0.631579)

n =250

k=(4/n) ( - 12/19"2)

integrandi <— function(s) {pnorm((k — 0.12 — 0.19 v)/(2/sqrt(n))) dnorm{u)}
integrate(integrandl; lower = — 0.631679; upper = Inf)

integrand2 < — function(u) {(1 — pnorm((k —0.12 — 0.19 4)/(2/sqrt(n}))) dnorm(u)}
integrate(integrand2; lower = — Inf; upper = — 0.631579)

n =290

k=(4/n) ( —12/1972)

integrandl < — function{u) {pnorm({k — 0.12 — 0.19 u)/(2/sqrt(n)}) dnorm(u )}
integrate{integrandl; lover = — 0.631579; upper = Inf)

integrand2 < — function(u) {(1 — pnorm((k — 0.12 — 0.19 4)/(2/sqrt (n)))) dnorm(u)}
integrate(integrand2; lower = — Inf; upper = — 0.631579)

n =289

=(4/n) (—12/19°2)
integrandl <-— function(s) {pnorm({k — 0.12 —0.19 ¥)/(2/sqrt(n))) dnorm(u)}
integrate(integrandi; lowsr = — 0.631579; upper = Inf)
integrand2 < — function(s) {{1 — pnorm((%k — 0.12 — 0.19 1)/(2/sqrt(n)))) dnorm(u)}
integrate(integrand2; lower = — Inf; upper = — 0.631579)

n =288

E=(4/n) ( —12/19"2)

integrandl < — function(u) {pnorm{{k —0.12 — 0.19 4)/(2/2qrt(n))) dnorm(u)}
integrate(integrandi; lower = — 0.631579; upper = Iaf)

integrand? < — function(u) {(1 ~ pnorm({k — 0.12 — 0.19 ©)/(2/sqrt(n)))) dnorm(u)}
integrate(integrand2; lower = — Inf; upper = — 0.631579)
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Using Fisher’s exact test
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00101 (0718 0.282
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001 ;01| 0310 | 0.004
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001 |01 | 06| 10 (0.226
0.01 { 0.1 | 0.7 | 10 | 0.408
001 | 0.1 1081} 10 | 0.674
001 | 01 | 09 | 10 | 0.856
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o i L) n power
0.01 0.2 (03 |6 0
001 )02 (046 0.002
001 102 {05 |6 0.002
001 |02 |06 |6 | 0012
001 1021076 0.028
001 102 |08 |6 0.066
001702 (096 | 015
00102 |1 6 0.266
(001 {02 } 03 |8 0.006
001 102|048 0.006
001 |02 |05 |8 0.026
001 |02 |06 |8 0.06
0.01 |02 |07 | 8 0.12
001 |02 088 0.258
001 (02|09 (8 0.42
001 )102(1 8 0.802
001 [ 02 ] 03|10 | 0.002
001 (02 |04} 10 (001
001102 |05 (10| 0.036
0.01 0.2 |06 | 10| 0.12
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0.01 {02 | 09 [ 10 | 0.652
0.0t 102 |1 10 { 0.884
o m 9 |n power
001105 |06 (6 0.002
0.01 |05 [07 |6 0.002
001 |05 (08 |6 0.002
001 |05 )09 |6 0.004
001 |05 |1 6 0.024
001 |05 |06 |8 0.002
001 {05 |07 |8 0.004
001 05108 (8 0.02
001 [ 05109 |8 0.064
001 [05]1 8 0.136
0.01 105 |06 |10 | 0.0086
0.01 | 05 | 0.7 | 10 | 0.022
001 [ 0.5 [ 0.8 | 10 | 0.036
0.01 { 05 {09 | 10 | 0.062
001 105 |1 10 [ 0.18

Section
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List of tables

o T | me n power
005 |01 ]]02¢}6 0
005 |01 (03| 6 0.008
005 {01 |04 |6 0.02
005101 |05 |6 0.064
005 |01 )06 |6 0.122
005 10107 |6 0.264
00501 |08 |6 0.462
005|101 (09 |6 0.624
005 |01 |1 6 0.854
005 |01 |02} 8 0.008
0.05 | 0.1 {03 |8 0.026
0.05 {01 |04 |8 0.11
0.05 | 0.1 )05 |8 0.176
005401 |06 {8 0.404
005 | 01| 0.7 |8 0.572
005 |01 |08 }8 0.806
005 |01 |09 8 0.946
005 |01 |1 8 0.996
0.06 | 0.1 | 0.2 | 10 | 0.006
0.05 | 0.1 { 0.3 | 10 | 0.05
0.05 | 0.1 { 0.4 | 10 | 0.174
0.05 { 0.1 { 0.5 | 10 | 0.284
005|101 |06 |10 | 0.494
005 101 | 0.71{10{ 0642
005 | 01|08} 10 | 0.844
0.05 | 0.1 ] 09| 10 | 0942
005 {0111 10 (1

30



e

3

L my | n power
005102 (031{6 0.008
006 {02 |04 |6 0.008
00502 )05 |6 0.032
005 |1 0210616 0.056
005 102 |07 |6 0.13
006 10210816 0.318
005102 |09 |6 0.432
005 102 |1 6 0.686
005102 |03 |8 0.016
005 10204 |8 0.058
005 )02 |05 |8 0.134
005102 )06 |8 0.192
006 |02 1078 0.38
006 10208 |8 0.582
005)02 |09 (8 0.788
0.06 |02 1 8 0.924
005 |02 ]03/[10] 0.02
0051020410 | 0.054
005702 ;05100122
005102 |06 |10 0.226

1005 | 0.2 | 0.7 | 10 | 0.454
005 | 0.2 |08 |10 | 0.628
005 (020910 | 0826
005 1021 10 | 0.994
« M | m | n power
005 )05 |06 16 0.014
0.06 (05 |07 |6 0.008
0.05 |05 }108]|6 0.044
0.05 (05 0916 0.078
006 |05 |1 6 0.12
005 |05 |06 |8 0.034
005|105 (107]|8 0.054
005 {0508 |8 0.134
0.05 105|098 0.214
006 (05 |1 8 0.36
005 | 05 0.6 |10 | 0.032
0.05 | 0.5 | 0.7 | 10 | 0.058
0.056 | 0.5 | 08§10 | 0.122
005 |1 05|09 |10 | 0286
005 {05 |1 10 | 0.612

Section



