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ARSTRACT. After a short survey of the mathematical contributions of P.L. Chebyshev, this pa-
per presents a mathematical formulation of Chebyshev polynomials, an especially useful kind of
orthogonal polynomials. To demonstrate one use of Chebyshev polynomials, the paper describes
the problem of finding the polynomial of order »n that minimizes the squared residual distance of
m data points to the fitted function. If the standard basis for R™ is used, this estimation problem
is plagued by multicollinearity, which results in numerical instability of the estimates. Chebyshev
polynomials provide a numerically stable way of estimating the least-squares solution. This paper
presents an algorithm for the use of Chebyshev polynomials 1o obtain a least-squares fit and works
through an example to demonstrate the method outlined in this paper. .
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1. INTRODUCTION

“Chebyshev polynomials are everywhere dense in numerical analysis.” This quote, which Sarra
(2006) attributes to “a number of distinguished mathematicians,” illustrates the richness and detail
that characterize the study of Chebyshev polynomials. Applications of Chebyshev polynomials
permeate numerical analysis and mathematics in general, making the potential scope of a paper
on the applications of Chebyshev polynomials enormous. For this reason, this paper does not
attempt to provide a complete survey of numerical methods that rely on Chebyshev polynomials.
Rather, this paper aims to discuss adequately one such application, polynomial approximation to
data using a least squa.lj'es criterion, while pointing the interested reader toward other applications

of Chebyshev polynomials.

The discussion of Chebyshev polynomials is the heart of this paper, but this paper cannot do Justice
to the study of Chebyshev polynomials without recounting important details of Pafnuty Cheby-
shev’s life and academic career. This paper, therefore, begins by providing context, describing
Chebyshev’s life and notable accomplishments in Section 2. Section 3 delves into the mathemat-
ics of Chebyshev polynomials, presenting a mathematical formulation, including their important
properties as sets of orthogonal polynomials. Sectlop 4 describes the least squares problem and
presents an algorithm to find the least squares app10x1mat10n to data using Chebyshev polynomi-
als. Section 5 surveys some other applications of Chebyshev polynomials, points to current research
agendas, describing an important weakness in Chebyshev methods - inability to effectively deal

with discontinuous functions. Lastly, Section 6 concludes with the overall message of this paper.

2. HISTORICAL INFORMATION!

Pafnuty Lvovich Chebyshev was born on May 16, 1821 in Okatovo, Russia to an upper middle
class military family. Shortly before Chebyshev’s birth, Russia had just defeated Napoleon and
established itself as a world power. This new position on the world stage sparked debate among
Russians about Russia’s relationship to Europe. Some nationals argued that Russia should iso-
late itself because they viewed other nations as inferior. Others saw the benefit of cultural and
economic exchahge and, therefore, pushed for the westernization of Russia. This latter group was

"This section is an adaptation from O’Connor and Robertson (2006). Sec [6].
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mostly comprised of military families who were acqua.'inted with European cultures and traditions.
Because Chebyshev came from a military family, he was part of this second movement. There-
fore, Chebyshev was brought up to appreciate European culture and was tutored in French by his
cousin, who also taught him arithmetic. Chebyshev’s fluency in French would become one of his

greatest assets in establishing himself as a mathematician on the world stage.

2.1. Education and Early Work. In 1832, Chebyshev’s family moved to Moscow. In Moscow,
Chebyshev was tutored by P.N. Pogorelski, a man some considered to be the best elementary math-
ematics tutor in Moscow. This early influence gave Chebyshev a solid mathematical foundation
and inspired Him to take up mathematics as a career. Chebyshev was, therefore, well-prepared
for uni;!ersity study at Moscow Univeréity. Theré, under Nikolai D. Brashman, he was exposed
to mechanical engineering, hydraulics, the theory of integration of algebraic functions, as well as
the caleulus of probability. These early studies served as a springboard for Chebyshev’s research

interests. He would later make large contributions to each of these fields.

Chebyshev aspired to international fame as a mathematician. Late in his career, he even objected
to being called a “splendid Russian mathematici.an,” insisting that the scope of his influence was
much more widespread than Russia. Indeed, Chebyshev’s significance spread well beyond Russia;
Chebyshev’s contributions retain their significance to this day. His personal drive to become a
world-wide mathematician colored his early work and the way he presented his findings. His
first publication was published in Liouville’s Journal in France in 1842. As France was the world
center of mathematics at the time, this first publication in a French journal was a tremendous

accomplishment and a sign that Chebyshev was emerging as a great mathematician.

2.2. Breadth and Scope of Contributions to Mathematics. Chebyshev made numerous and
wide-ranging contributions to mathematics. In probability, he is best known for the Chebyshev
inequality, which is used for a convenient proof for the weak law of large numbers. He also
pioneered work on random variables and expected values, providing much of the foundation for

the application of probability to statistical data.

In number theory, he proved several important results regarding prime numbers including Bertrand’s

conjecture that for n € N where n > 3, 3 at least one prime number, p, so that » < p < 2n. In
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addition, Chebyshev was instrumental in producing a compiete edition of Euler’s 99 number theory
papers, published in 1849. Chebyshev also made contributions to the theory of integrals (general-
izing the beta function), the construction of maps, the caleulation of geometric volumes, and the
construction of calculating machines. In addition, Chebyshev was also an inventor. In 1893, a year
before Chebyshev’s death, the World’s Exposition in Chicago exhibited seven of his mechanical

inventions, one of which was a special bicycle for women.

2.3. Contribution to Numerical Analysis: Chebyshev Polynomials. Chebyshev’s work on
approximation theory appears to have been largely inspired by a trip in 1852 through Western
Europe where he examined various steam engines and their mechanics in practice. Tikhomiroy
later applied Chebyshev’s work on approximation theory to the theory of mechanisms, noting
that Chebyshev’s work on the subject inspired his own. In 1854, Chebyshev published Théorie
des mécanismes connus sous Ie nom de parallélogrammes, which was the first work to feature
Chebyshev polynomials. He would later expound greatly on those initial ideas, generalizing the

idea of orthogonal polynomials.

Chebyshev was one of the first mathematicians to recognize the power of orthogonal polynomials.
Others, namely Legendre, had discovered applications of orthogonal polynomials before Cheby-
shev’s time, but Chebyshev greatly expanded what was known, as well as the range of applications
regarding orthogonal polynomials. Specifically, Chebyshev developed a general theory of orthog-
onal polynomials, for which he is well known. His work in the field of approximation theory was
s0 vast that many of his contributions went unheralded until well after his death. ‘Of note in this

regard are Hahn Polynomials and the Christoffel-Darboux formula [8].

3. MATHEMATICAL FORMULATION

The remainder of this paper is concerned with Chebyshev polynomials and their application to
the least squares problem. Chebyshev polynomials are a special case of orthogonal polynomials.
Therefore, i{ is important to consider properties of orthogonal polynomials first to provide context

for the discussion of Chebyshey polynoinials.
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3.1. Orthogonal Polynomials. Orthogonal polynomials have widespread application in math-
ematical and physical sciences because they provide a natural means of approximating functions
and, therefore, ease in solving complicated differential equations. The general application of or-
thogonal polynomials to solve differential equations is, however, beyond the scope of this paper,
More to the point, this section presents the more useful and interesting results relating orthogo-
nal polynomials, leaving further investigation to the reader. Before describing some of the more

interesting results on orthogonal polynomials, three definitions are necessary.

Definition 3.1. Two polynomials, p(z) and ¢(z) are orthogonal on [a, ] if

b
(1) /w(x)p(a:)q(a:)dw = 0

where w(x) is a weighting function that satisfies w(z) > 0,Yz € (a,b).

Definition 3.2. A set of polynomials P = {Po;P1,--, P}, is an orthogonal set on {q, bl if p;(z)

and p;(z) are orthogonal for all ¢ # .

The following definition implements this notion of orthogonal sets of polynomials

Definition 3.3. The sequence of polynomials {p,} is called an orthogonal sequence of poly-
nomials on [a, b] if every subsequence of the form P — {Po, P14 ...y} forms an orthogonal set on

[a, b].

Here [a,b] is called the interval of orthogonality, which is the interval on which (1) holds.
"Two notable properties of orthogonal polynomials are the existence of real roots property and the
interlacing of roots property. There is also a general recurrence formula, which is useful for finding
orthogonal polynomials in terms of the Previous two terms in the orthogonal sequence. These
properties are stated and proven in the following four theorems. Proofs of these theorems were

adapted from the references (See [5] for alternate proofs).

Theorem 3.4. If p, be the nt* order term in an orthegonal sequence of polynornials with interval

of orthogonality [a, b], then p,, is orthogonal to any polynomial of lower degree on the same interval

of orthogonality.
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Proof. Let S(z) be a polynomial degree less than or equal to n — 1.

Intuitively, there exist constants ¢; such that S(z) = S0, oqp;. Using this fact in the first step,

form the inner product over the integral of orthogonality:

f

/(ia;) Pipn(z)w(x)dz

i=0

[ s@mapte

= Zaifpiprl(x)w(x)dm

The second line is valid because the summation is a finite summation, and can, therefore, be
pulled out of the integral. The last line uses the orthogonality of p, to every lower-order term in
the orthogonal sequence. Thus, we have that $(z) and Pn(x) are orthogonal if S(z) is a polynomial

of a lower degree than p,(z). O

Theorem 3.5. (esistence of real roots): Each polynomial in an orthogonal sequence {p,}32, has

k distinct, real roots, all of which lie strictly within the interval of orthogonality (a,D].

Proof. Let m be the number of times that the polynomial p,(x) changes sign inside the interval
of orthogonality. Let R = {z1,z3,...,Zn} be the set of the points where p,(z) changes sign. By
definition of root, R is the set of roots of the poly.nomia.l pu(z). By the fundamental theorem of
algebra, we know that m < n. The only way that m — n is if the all of the roots of p,(z) are
distinct, real, and lie inside the interval of orthogonality. Thus, the proof is done if we can show

that m = n.

Let S(z) = [[Z(z — =), where z;, ¢ = 1,...,m are the roots of p,(x). Notice that S(z) is
a m" degree polynomial that changes sign whenever Pn{z) changes sign within the interval of
orthogonality. This means that Vz € R° N [a, B, 5(x) and pn(z) either have the same sign as one
another (Case I) or have opposite sign from one another (Case II}. In Case I, S(:c)pn(:c) > 0Vz €
E°Nia,b]. In Case IL, S(z)pu(z) < 0¥z € BN [a, b].

Now, consider the inner product between S(x) and p,(z), where w(z) > 0is the weighting function:
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f S@palz)u@)dz # 0

Under Case 1, this integral is positive. Under Case I, this integral is negative. Regardless, it
is not zero. Thus, we know that S (z) and p,{z) are not orthogonal. By the previous theorem,
this implies that S(z) is a polynomial of degree n or larger. Clearly, it cannot be larger. Thus,

m=n. [}

Theorem 3.6. Theorem 3.6. (recurrence formula for orthogonal sequences): If {py}22, is an
orthogonal sequence with interval of orthogonality ldy, do], then ppyq = (@ + by)pa — Capn_y where

the coefficients a, b, and ¢ depend on n.

Proof. Choose a so that the z"*! terms of azp,(z) and p,,; match. Then, we know that azp, () -
Pni1 = Su{x), a polynomial with degree n or less. We can also choose b, so that the z" terms
of (azx + b)ps(z) and p,,, match. This implies (a + bz)pn(z) ~ Payy = Su-1(z), a polynomial
with degree n — 1 or less. Expressing S, _1(z) as a linear combination of the polynomials in the

orthogonal sequence, the previous expression reduces to:

n-1
(2) (a2 + B)pu(2) — Psa(z) = Z Aipi()

i=l]
Now, multiply both sides of this expression by pj(z)w(z), where pi(z) is the j** (j < n — 2}
polynomial in the orthogonal sequence and w(x) is the weighting function for the orthogonal

sequence.

| (ﬂﬂ?‘ + b)Pn($)Pj(I)w($) - anl-l(x)l’j(w)w(z) = (i /\ipi(-’ﬂ‘)) pi{zhw(z)

bpa(@)p; (whw(z)+

= 3 f\spe(ff)i‘?j(ﬂ«")w(x)) + i (T)pi(z)wiz)
axpﬂ(:r)pj(w)w(:c) — Pnt1 (x)?:’j (:c)w(:c) (Z g

¥
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R If we take the integral over the interval of orthogonality of both sides of this expression , the

equality remains:

b fie pa(e)ps(a)u(e)dat _ (T n@pew(a)s) +
af:l? zp{2)pi{z)w(z)dz — f:f Po+1(2)p; (2)w(z) Aj fdl pj(a:)pj(:c)w(:c)dz:
da da
0-+a [ mle) @@ ulade—0 = ©)+ [ e (eutes

dl dl

where going from the first expression to the second expression is accomplished by recognizing that
Pr(z) and py(x) are orthogonal for & # 1. Notice the rearrangement of the terms inside the integral
on the left hand side of the expression. We know that zp;(z) is a polynomial of degree no greater
than n— 1 because p;(z) is a polynomial of degree no greater than n—2. Thus, by the first theorem
in this section, p,(z) and zp;(z) are orthogonal and the integral on the left hand side is zero. Now,

notice that for 7 < n — 2, we have:

dz

y [ pia i) = 0

dy
The integral in this expression is clearly positive, so Aj must equal zero for 7 < n—2. This implies
that the only A; that can be nonzero is A,_;. Thus, equation (2) reduces to:

(02 + B)pn(2) ~ Posa(®) = An_1pnoa(2)
Set ¢ = A,_; and we have:
Prtr(T) = cpa_i(2) — (az + b)p(z),

which is the desired result. 3
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Remark 3.7. Given the coefficients the first couple of terms, there is a closed form for each of
a,b, and ¢. For orthogonal polynomials with an interval of orthogonality of [dy, ds), let k% be the
coefficient on the i** order term for the 7" order orthogonal polynomial in the sequence. Then,

the following are closed form representations:

nit1
kn-l—l
a = I
kn
n n—1
h = a kn+1 ; ku
k"+l kn
n-+1 n

. - a(k:::% Py lpn(x)]Qw(&:)d;r)
K o paa (@) w(z)dz

Lemma 3.8. Suppose that p,(z) and Pri1(%) are terms in a sequence of polynomials {p;}2, that

are orthogonal on [a,b). Suppose also that the leading term in each polynomial in the sequence s

positive. Then:

Prrt(®)pn(®) > popa (z)p}, ()

Jor any = € [a,b], where pj, means %),

Proof. (by induction). First, establish the base case: Let 7 = 0. Clearly, p{(z) > 0 and py(z) > 0
hecause the leading terms in each of the polynomials is greater than zero. We also know that

Pol(x) = 0 because py(x) is constant with respect to =. Thus, it is true that:

p:r.—l—l(x)pn(x) > pn+1(£€)p:1(x)=0

Now, establish the gencral case (assume the statement holds for n, show that it also holds for

n+1): Use the recurrence formula (the previous theorem) to get an expression for p,;(z):
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Pnna (3:) = (a:t: + b)pn(:c) - Cpn—l(x)
= Pp1(®) = apa(e) + (az + b)p)(z) — Ppa(7)
Now, form the expression:

[apa(z) + (az + B)p),(x) — cpl,_, ()] palz)—
[(az + b)pa() — cpn-1(2)] Pl (%)

Pi;+1($)pn(x) —pn+1($)p:1($) =

app(2) + (a2 + O)p),(@)pa(e) — (az + Bl (x)palx)
~ P (E)Pn(T) + P (2)p;,(2)

Then, some cancelation yields

Parr(@)2a(2) = pun(@(2) = ap(@) + ¢ (P (2)pu1r(2) — paloply_y(2))

2 c (p::(m)pn—-l (37) - pn(x)p:z—l(m))

Now, by the induction hypothesis, we know pj,(2)pa_1(z) — pa(z)p!,_;(#) > 0. From Remark 3.7,
ol (BT 122 ot Pu(z)de
K2 Je2lpn—1 (o) wie)dz

a function of the leading terms of the polynomials (which are greater than zero by hypothesis)

=

). This expression is greater than zero because it is

- and the integral of a squared polynomial times & positive weighting function. This implies that

Prr1{T)pn(®) — pupr(2)p, (x) > 0, which is the desired result. ]

Theorem 3.9. (interlacing of roots): Consider a sequence of polynomials {py}L,, orthogonal on
the interval [a,b]. Let {2, < 253 < ... < Tu} be the roots of p,(x) with zp = a and Tpp1 = b For
notational convenience, let {fm<wp<.<yy< Ynt1} De the roots of puyy. Then, each interval

of the form (x;,%;41) for = 0,1,...,n, will contain ezactly one of the roots of ppy(z).

Proof. Suppose that y; is a root of Pn+1(z). Lemma 3.7 implies that at this value:
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Por )Py} > puir(y)Pl(y;) =0

‘This inequality implies that pf,,(z) and p,(z) have the same sign at any root of p,41(%). It also
implies that any root for p,,;(z) cannot be a root of pr(z) (otherwise the inequality would not
be strict). By Rolle’s Theorem, there must be a point between ¥; and y;41 where p) (%) changes

sign. Thus, pa(z) changes sign in the open interval (%, ¥5+1). Call this point T;.

So far, we’ve established that there exists a root of Pu(%) such that z; € (y;, y541) for every interval
where the endpoints roots of p,,,. To establish the result that there exists exactly one root o_f
Pry1(2),y; € (24, %;11), we need to establish that p=(x) changes sign only once between roots of
Pnt1(2). To establish this fact, suppose that there are two roots of Pa(2) in the interval (5, y;41).
Then, because there is at least (;ne root of pn(z) in the intervals (y,,), (%2, ¥3), s (Yo Yuuga ). If
any of these n .interva.ls has more than one root for p,{z), then Pn(z) would have more roots than

its highest order term, a contradiction.

‘Thus, there is exactly one root of p, in each of the intervals (y1,v2)s (V2. ) ., (Uns Yna)- By
defining 24 = a, and z,4; = b, we can say that y; € (%o, z;) and that y,.q € (Tn, Zn41). We can, -
therefore, turn the statement around and say that there exists exactly one root of p,.1(z) in each

interval of the form (z;, z;41) where j = 1,2, ..., n. D

3.2. Overview of Chebyshev Polynomials?. This section begins with a definition:

Definition 3.10. A set of Chebyshev Polynomials® {7}(%)}£=2 is aset of polynomials satisfying

(1) with respect to the weighting function

1

(3) wie) = ——s

®This section draws largely from material on the Math-World Web Resource. See [8].
3This paper uses “Chebyshev polynomialg” to refer to Chebyshev polynomials of the first kind. There are also
Chebyshev polynomials of the second kind, which are not discussed in this paper. For more information, see {8}
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The interval of orthogonality for Chebyshev Polynomials is [-1,1]. More usefully, Chebyshev

polynomials can be defined through the the following identity involving cosines:

(4) | Tu(cos(8)) = cos{(nf)

If we let x=cos(f), expression (4) becomes:

(5) " Ta(®) = cos(n(cos™Hz)))

Sequences of Chebyshev polynomials can also be generated recursively with the following two

recurrence relations.

(6) Tona(e) = 20Ta(e) ~ Tor(2)

(7) Toni(z) = 2Th(z) — V(1 - 22)(1 ~ (To(2))?)

where To(%) = 1 and Ty(z) = 2. The expression in (6) is simpler than the one in (7), but requires
more knowledge in the sense that one must know the previous two polynomials in order to use (6),

whereas {7) requires only knowledge of the pre\;ious polynomial.

Aside from Ty = 1, the first five Chebyshev polynomi-a.ls are as follows:

Ni(z) = z

To(z) = 22°—1

T3(z) = 42° -3z
Ty(z) = 8z'—822+1

Ts(z) = 162° —20z° + 5z
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FIGURE 1. The First Five Chebyshev Polynomials
Ty(x) W T

T

-
]

T

Figure 1 displays the first five Chebyshev polynomials, plotted on their interval of orthogonality
[_11 l]'d

Being a set of orthogonal polynomials, the roots of Chebyshev polynomials are distinct, real, are all
in the interval [—1, 1], and behave according to the interlacing of roots property. More specifically,
there is a closed form expression for finding the roots of a Chebyshev polynomial, 7,,(z), as given
by the following formula for 0 < & < n. These roots are known as the Chebyshev-Gauss (CG)

points [5].

(8) T = cos(ﬂ—(k;i—)

)
The extrema for any given Chebyshev polynomial also have a simple representation for 0 < k < .
The set of extrema taken together with the endpoints are called the Chebyshev-Gauss-Lobatto

(CGL) points and are useful in numerical integration [5].
ka
9 r = cos{—
©) ()
In addition to those mentioned in this document, there are several other recursion formulas that

can be used to generate Chebyshev polynomials. Chebyshev polynomials also have important re-

lationships with multiple-angle formulas and have representations as complex integrals. There are

This figure was taken from (6]
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some interesting determinant relationships and a vast set of applications for Chebyshev polyno-
mials. In addition, there are important relationships between Chebyshev polynomials and Bessel

functions. More information along these lines can be found in the references (See [5, 6]).

4. LEAST SQUARES AND CHEBYSHEV POLYNOMIALS

Chebyshev polynomials have broad application in applied mathematics and physical sciences. One
especially important application of Chebyshev polynomials within the field of numerical analysis
is the application of Chebyshev polynomials to the least squares problem. To provide appropriate
context for this application, this section defines and describes the least scjuares problem before
applying the Chebyshev polynomial algorithm for approximating the least squares solution to the

normal equations.

4.1. The Least Squares Problem. Much of statistical theory seeks to find a “best approxima-
tion” to real world data. In the world of statistics, the most often employed criterion to gauge
what constitutes the “best” approximation by the criterion of least squares. Consider the linear
case first. That is, suppose {w}, ié a set of data points that we wish to approximate with a
linear equation, g(x) = a + bz. For linear regression, the least squares approximation is the one

that minimizes (with respect to a and b).

(10) @) = 3 amtb-p)?
k=0

Differentiating (10) with respect to a and b and setting the result equal to zero yields what are

referred to as the normal equations for a simple linear funection.

(Z Ty)a+ (Z )b = Z YTk
k=0 k=D k=0

(Z rlat+ (m+ 1) = Zyk
k=0 k=0
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The solution to the normal equations yields a and b that minimize sum of the squared deviations

from the response and the fitted function, which in this case is a straight lne.

4.2. Least Squares for Nonlinear Approximations. The method of least squares is not re-
stricted to linear regression. In fact, many of the most interesting applications of the least squares
criterion arise in nonlinear settings. Cheney and Kincaid (2003) illustrate how to obtain normal
equations when searching for the best funetional approximation of any particular form (e.g., expo-
nential functions, log functions, etc.). In fact, they offer examples of obtaining normal equations

when the functional form is not a polynomial, but a transcendental function (See [1]).

For numerical purposes, however, it is common to construct the functional approximation to the
data using a set of polynoﬁ]ial basis functions for R™, where 7 is the highest order polynomial em-
ployed. In this case, the resulting fitted function is a polynomial of degree n. Using a set of func-
tions, {g;(z)}%_,, which form a basis for R", the least squares problem becomes min ¥{c;, c3, ..., ¢,)

where:

m T
’G’J’(Cl,Cza---,Cn) - Z[chgj(mk)_ykP
k=0 j=0
The normal equations for this situation are obtained by differentiating with respect to ¢ for
0 < 7 < n and equating the resulting linear combinations to zero. The i** normal equation,

therefore, becomes:

i ki3

2D a@g @l = > vigilx)
k=0

=0 k=0

One of the more natural choices of a basis for R® is the set {1,2,22, ..., z"}, which clearly spans
IR™. This set, however, is often a poor basis for numerical purposes because these functions are all
very similar and pick up on similar behavior in the data. Employing orthonormal bases, like sets
of Chebyshev polynomials, can correct this redundancy by ensuring that each of the polynomials

in the set is different enough from the others. In this way, Chebyshev polynomials provide an ideal
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Algorithm 1 Using Chebyshev polynomials to obtain the bost approximation to a set of m + 1
data points using a polynomial of order n or less.

(1) Let a = min{z} and b = maz{x;}. Then Ja, b] is the smallest interval containing all the
data points.

(2) Transform the data to the interval [—1, 1] by using the change of variables Trew = Zz—z—j_—“a‘—b
This transformation is important because Chebyshev polynomials are orthogonal polyno-
mials with an interval of orthogonality of (—1,1}. The useful properties of Chebyshev
polynomials, therefore, provide a good approximation to the data on the interval [~1, 1].

(3) Use Chebyshev polynomials to generate the (n+ 1) x (n + 1} normal equations. These
equations are given by E?zo[z}cnzoﬂ}(mk)ﬂ(a:k)]cj = Y roUkgi{zy) for 0 < { < n.

(4) Solve for ¢g, ¢, ..., ¢, using some equation solving routine.

(5) Use co, ¢y, ..., cn to form g(z) = Z}‘:ﬂ ¢;Ti{Znew), defined on the interval (-1, 1].

(6} Transform the fitted function back to the interval [a,b]. The fitted polynomial is g(E==t),

tool with which to address the problem of finding the best polynomial approximation to the real

world data.

4.3. Chebyshev Polynomials in a Least Squares Setting. Cheney and Kincaid (2003) de-
scribe an algorithm for using linear combinations of polynomials to produce a polynomial of best
fit, to real world data. I repoduce this algorithm at the top of this page (Algorithm 1). This
subsection provides some some additional details regarding why particular steps in the algorithm

are needed.

The goal of the algorithm is to obtain the best approximation to a set of m+1 data points,{x}1* ,,
using a polynomials order n or less, where m > n. Generally, it is not useful to fit high-order
polynomials (high n) to data. Rather, it is desirable to choose the smallest n that does a reasonable

~ job approximating the m + 1 data points.

The application of Algorithm 1 is not limited to using Chebyshev polynomials. The algorithm
allows for other orthogonal sets of polynomials to be used in place of Chebyshev polynomials. The
algorithm does, however, produce better results with Chebyshev polynomials because they are a

diffuse, orthogonal set of functions.



P.L. CHEBYSHEV AND CHEBYSHEV POLYNOMIALS 17

5. SCOPE OF APPLICATION

Beyond their application to least squares, Chebyshev polynomials have broad application in math-
ematics. This section gives an example for one such application and discusses an important limi-

tation of Chebyshev approximation techniques — Gibbs Phenomena.

9.1. Motivation for the Application, Qne particularly nice consequence of Algorithm 1 is
that it yields a set of normal equations whose solution has better numerical stability than the
standard approach. Numerical stability is a concern with the ordinary basis for R* because the
functions in the set {1, 2, 22, ..., 2"} are highly collinear with one another. Where using the ordinary
polynomial basis leads to problems with multicollinearity, the algorithm in the previous section
harnesses the ortogonality of Chébyshev polynomials to circumvent these problems. The result is

better numerical stability in the estimates.

The following definition helps to make this discussion more precise:

Definition 5.1. The condition number of a matrix A is defined to be k(A) = % where

Omaz{A) and 0y, (A) are minimal and maximal singular values of A,® respectively.

Matrices with small condition numbers have better numerical stability than those matrices with
large condition numbers. A problem with a low condition number is said to be well-conditioned,

whereas a problem with a high condition number is said to be ill-conditioned.

5.2. A Least Squares Polynomial Example. The following tabie of data (where z; are values of

- the explanatory variable and y; are values of the response variable} provide an illustrative example

on the use of Chebyshev polynomials. In this example, we seek to fit a polynomial of order five to

the nine data points.

1] 1 2 3 4 5 6 T18(9

| 1.0 | 1113 (151921 (24]|28]|35

7 11.8411.96)12.21:245(2.94|3.18[4.9[5.2](5.7

The first two steps of Algorithm 1 tell us to transform the z; to the interval of orthogonality for

Chebyshev polynomials, [—1, 1). Under this transformation, the data change to the following table.

SEvery matrix has a singular value decomposition, For a proof of this fact, see [1].
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i{ 1 2 3 4 5 6 7 8 9

z;{-1.0|-0.92]-0.76 | -0.60 | -0.28 |-0.12 | 0.12 [ 0.44 ] 1.0

v 1184 1.96 | 221 | 245 | 294 | 3.18 | 4.9 | 5.2 | 5.7

At this point, it is more useful to express the normal equations in matrix-vector notation. Because
this is how the computer works with the problem, it is instructive to examine the properties of these
matrices. To get to matrix-vector form of the normal equations, employ a set of basis functions,
{g;(=z) }?:1} by (1) evaluating each basis function, g;(x), at each value of the explanatory variable,

%, in the dataset, (2) forming the following matrix

a(@1) glz) . gilz) .. galm)
a{®2)  g(x2) .. gi(wa) .. ga(m)
(11) A =
| g1(z:) 9‘2(331') 9}'(37:') gn(ﬂ?:‘)
| gl(mm) 92("5171) Qj(mm) gn(-'rm) )

and, (3) use this expression for A : (m + 1) x n to form D = ATA. Viewed in this light, the

normal equations (in matrix-vector form) become

Dc = ATy

where c is a n x 1 column vector corresponding to the coefficients on the n basis functions, and y

is the (m + 1) x 1 column vector corresponding to the m + 1 data points.

Based on this matrix representation, an important consideration for numérical]y solving the nor-
mal equations is the conditioning of D. More concretely, we wish compare the degree of muiti-
collinearity present in the D matrix under the standard basis and under the Chebyshev polynomial
transformation. Computing the condition number for each of these matrices will give us a way to

compare the two techniques.
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Using Matlab, I constructed D for the present example using both the natural polynomial basis for
R*, {1, 2,22, ..., 2"}, and using the Chebyshev polynomial basis. Under the natural polynomial
basis, the condition number for D is 970, whereas under the Chebyshev polynomial basis, the
condition number for D is 6.19. This enormous difference in conditioning of the D matrix indicates
a much greater stability from using Chebyshev polynomials to solve for the best fittin g polynomial,

as well as greater efficiency in obtaining solutions to the normal equations. ®

5.3. Gibbs Phenomena and Current Research. There is a vast assortment of other appli-
cations of Chebyshev polynomials. These applications span from functional approximations to
methods to solve partial differential equations. All of these applications perform poorly when the
solution (or function to be approximated) has a discontinuity or is nearly discontinuous. Break.
downs in Chebyshev polynomial approximations around discontinuities are called Gibbs Oscilla-
tions (or the Gibbs Phenomenon, see [7]). In any application of Chebyshev polynomials, one must

always be wary of discontinuities in the function (or solution) to be approximated.

Although Chebyshev methods do not handle discontinuities well, they appear to work optimally
when the underlying function is continuous. In fact, current research on Chebyshev methods seeks
to modify the approximations given by Chebyshev polynomials with spectral filters in order to
remove Gibbs Oscillations. Sarra (2006) concludes his paper by saying, “Postprocessing methods
to lessen the effects of the Gibbs oscillations are an active research area which would be an excellent

topic for undergraduate research or as the topic of a Masters thesis.” {7]

6. CONCLUSION

Pafnuty Chebyshev was a remarkable mathematician who made important contributions to many
branches mathematics, including number theory, probability, the theory of integration, and, as is
apparent from this paper, numerical analysis. Chebyshev accomplished a great deal with nearly
every topic he studied. In no branch of thought is this more apparent than in numerical analysis.
To say that Chebyshev polynomials are a useful tool for approximation is an understatement.

Chebyshev polynomials are powerful, dynamic, and have changed the face of numerical analysis.

$The Matlab Code I employed to form the D matrix under different polynomial bases and to find the conditioning
of each of these matrices is attached in the appendix. Matlab output from running the code is also attached.



P.L. CHEBYSHEV AND CHEBYSHEV POLYNOMIALS 20

REFERENCES

{1} Boik, R. A Pair of Primers: Primer on Matriz Analysis and Primer on Linear Statistical Models. Department
of Mathematical Sciences. Montana State University ~ Bozeman (August 13, 2007).

[2) Cheney, W. and D. Kincaid. 2003. Numerical Mathematics and Computing. Brooks Cole: New York. 5th Edition
(July 25, 2003).

[3] Fischer, B. and R. Freund. 1989. “Chebyshev Polynomials are Not Always Optimal.” Research Institute for

Advanced Computer Science - NASA Ames Research Center. RIACS Technical Report 89.17.

[4] Iyanaga, S. and Kawada, Y (Eds.) 1977. Cebysev (Tschebysheff) Polynomials. Appendix A, Table 20.I1 in
Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 1478-1479.

[5) O’Connor, J.J. and E. F. Robertson. 2006. Chebyshev Biography. Turnbull WWW Server at the School of
Mathematical and Computational Sciences, University of St. Andrews. Updated through August 2006. [URL:
http://www-history.mcs,st-andrews.ac, uk/Biographies/Chebyshev Jhtml]

[6] Sarra, Scott 5. 2006. Chebyshev Interpolation: An Interactive Tour. Journal of Online Mathematics and Its
Applications. Volume 6 {August 2006). Article ID: 1297.

[7] Weisstein, Eric. 2004. Chebyshev Polynomial of the First Kind. From Math-World—A Wolfram Web Resource.
Last Modified: August 5, 2004. http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.
heml. [Access Date: September 25, 2006).

[8] Wikipedia, the Free Encyclopedia. 2006. Orthogonal Polynomials/Proofs. Last updated: May 3, 2006. http:

//en.wikipedia. org/wiki/ﬂrthogonal_polynomials/proofs .



P.L. CHEBYSHEV AND CHEBYSHEV POLYNOMIALS 21

APPENDIX A: MATLAB CODE AND QUTPUT FOR THE EXAMPLE IN SECTION 5

This appendix presents the Matlab code and output used to do the computations in the example
in Section 5. First, here’s the Matlab code:

% Enter Data

x=[1,1.1,1.3,1.5,1.9,2.1,2.4,2.8,3.5]
y=[1.84,1.96,2.21,2.45,2.94,3.18,4.9,5.2,5.7]

a=min(x); b=max(x);
xpoly=(2.%x-(atb}) . *(1/(b-a));

% Polynomial Basis D Matrix on [-1,1] %

fprintf (L, 7. \nt);
fprintf (1, *Working with Ordinary Polynomial Basis...\n?);
fprintf (i, S \n’});

pxl=xpoly.~0;
px2=xpoly.~1;
px3=xpoly.~2;
px4=xpoly.~3;
pxb=xpoly.~4;
px6=xpoly.~5;

A=[px1’,px2’,px3’,px4’,px5’];
D=(A)7*4a;

% Compute the Condition Number of D A
k=cond(D);

% Set the timer for the time it takes to find the polynomial solution ¥

'k

tl=clock;

Eprintf (1, 2 oo \n?);
fprintf(1,’The Condition Number for D is\n?); .
fprintf (4, ? .. \nt};
fpraintf (1, 2o o . \n?);
fprintf(1, 'The Solution for the polynomial’s coefficents is.,.\n’);
Tprintf (4, 2 oo \n?);
solution=inv(D)*A’xy?;

poly(solution)

fprintf (1,2 - mmm e ___ \n?);

fprintf(1,’Time Taken for Ordinary Basis\n');
Eprintf(d, P .. \n’);
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etime({clock, t1)

% Using Chebyshev Polynomials as a Basis %
% Transform the data to the interval [-1,1]

xcheby=(2.*x-(a+b)) . *(1/(b-a));

EPTANGE (L, ? oo e m oo . \n?);
fprintf (1, 'Working with Chebyshev Polynomials...\n?*);
fprintf (1, e \n’);

% Dbtain Chebyshev Polynomials up to order 5 ¥

cxl=xcheby."0;

cxZ=xcheby."1;

cx3=2,*(xcheby. 2}-1;

cx4=4.*(xcheby."3) -3.*xcheby;

cx5=8.* (xcheby."4) -8, *(xcheby."2)+1;
€x6=16.*(xcheby."5)-20.*(xcheby."3)+5.* (xcheby);

CA=[cx1?,cx2?,¢x3’,cx4?,cx5°];
CD=(CA) '*CA:

% Compute the Condition Number for the Chebyshev D matrix ¥

k=cond (CD) ;

4 Set the timer for the time it takes to find the polynomial solution Y%

t2=clock;

fprintf (L, ? oo . \n?);
fprintf(1,’The Condition Number for D is\n?’);

Tprintf (1, o el \n?);
k

solution=inv(CD)*(CA’#y?);

fprintf (1, P oL \n’);
fprintf (1, ’Time Taken for Chebyshev\n’);
fprintf (1, P . \n’);

etime{clock, t2)
% Recover the coefficients in the polynomial %
cheby=[1,0,0,0,0;0,1,0,0,0;—1,0,2,0,0;0,-3,0,4,0;1,0,-8,0,8];

Iprintf (1, e L \n?};

fprintf (1, °The Sclution for the polynomial’s coefficents is...\n’);

22
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fprintf (1,7 --ve e

poly{solution’*cheby)
The Matlab code above yielded the following output.

ad4lproject
X = :

1.0000 1.1000 1.3000 1.5000 1.9000
2.1000 2.4000 2.8000 3.5000

y= '
1.8400  1.9600  2.2100  2.4500  2.9400
3.1800  4.9000  5.2000  5.7000 ‘

1.0000 -5.6803 0.6986 24.7772 1.5490

-13.6814

23
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The Solution for the polynomial’s coefficients is

1.0000 -5.6803 0.6986 24.7772 1.,5490 -13.6814

Notice that not only did the Chebyshev method yield a better conditioned matrix, but the Cheby-
shev method was able to do the computations in less than half the computation time. For the
present example (where there are only 9 data points and 6 cocfficients), this does not make a big
difference. For real world examples where computation time is an important factor, Chebyshev
polynomials can both improve the numerieal stability of the estimates and decrease the computa-
tional complexity of solving the normal equations.



