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1.2 An Example: Prostate Data

Data was collected on 97 men with prostate cancer who were scheduled to receive a radical
prostatectomy. The researchers are interested in predicting the volume of the tumor based
on f}ariOUS explanatory variables. The questions of interest are which model is closest to
the “true” model and which model amongst those considered should be used for prediction
and estimation of the parameters. We could devise a candidate set that contains all possible

linear models of the form
y = o+ XB +e.

When the full model is fit, we see that the residuals seem to follow a right skewed distri-
bution and there are violations of the constant variance assumption. In order to keep from

violating these assumptions, I will also consider model building on the log-scale,
log(y) = Bo+ XB +e.
This suggests an alternative set of nonlinear models to consider are models of the form
Y = Boe™f +e

which have the same mean structure, different variance assumptions and are nonlinear in
/3. Once the set of candidate models has been determined, we could proceed with model

selection methods in order to find the “best” model in our candidate set.

1.3 AIC & Kullback-Leibler Distance

The Kullback-Leibler (K-L) Distance between models f and g is a directed distance be-
tween the two models. It can be thought of as the “information lost when ¢ is used to
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1 Introduction

1.1 Model Selection

The problem of model selection arises when we have a set of data and we would like to
determine the “true model” which generated the data or at least choose the model that is
most supported amongst a set of reasonable candidate models. Typically, we have a set of
n data points of the form (x;,y;) where x; is a. vector of k explanatory variables and y; is a
vector of responses. Often times, the data set is split into two pieces with the first piece to
be used for model selection and the second piece to be used to assess the model’s ability to
predict future observations.

With regards to the model selection process, one should have specified a set of candidate
models prior to data collection. It is often assumed that the Candidate set contains the*“true”
model. Theoreﬁcally, the model which should be chosen as the “best” model is the one
which minimizes a given criterion. Also, the model which minimizes a given criterion
should be the “best” model. It is important to note, however, that if the candidate set
does not contain “good” models, then even the “best” model in the candidate set may still
not be a good model. Another potential problem is that if there are too.many models in
the candidate set, the chances of finding one distinctly preferred model will decrease and
the ability of any criterion to find the “true” model is reduced. Therefore, it is important
for the researcher to think about which variables are important in a practical sense and

which variables may be important based on'prior knowledge of the problem (Burnham &

Anderson 1998).



overly complex models, however, it is asymptotically unbiased in large samples. There are
several competing criteria, such as AIC, (Hurvich & Tsai 1989), AIC, (McQuarrie & Tsai
1998) and BIC (Schwartz 1978), which have different penalties for overfitting and have

been shown to be more effective than AIC in small sample model selection.

1.4 MSEP as a target for model selection.

The mean squared error of prediction (MSEP) is an alternate target for model selection as it
is a statistic that helps to evaluate ?he performance of a predictor (Droge 1996). In a regres-
sion setting, where we have n observations, (y1, Y2, ..., ¥»), and a true model y = X3 + ¢
with ¢; ~ N(0,2), the true MSEP is defined as the variance of random errors plus the

error from estimating the true regression model, or Mean Squared Error (MSE).

MSEP =137 E(y— 3:)’
= 2Elly - 3ll*
=02+ 130 E(f(z:) - 5i)
=o?+ MSE.
Small MSEP is possible when the variance pf the random errors is small, when the candi-
date model is close to the true model, or in both situations. In theory, if we can find the

model with minimum MSEDP it will be closer to the true model than the rest of the candidate

models. In practice, however, the true MSEP is unknown and must be estimated.



approximate f” or in a practical interpretation, “the distance from g to f” (Burnham &

Anderson 1998). It is defined in the continuous case as I(J, 9) = [ f(z)log (%) dz

where f and g represent probability distributions. It is equivalent to say

1(f.9) = E; (tog (455))
= J f()log(f(2))dz - [ f(z)log(g(z|6))dz

= Eyllog(f(z))] — Ef[log(g(=]6))].

In model selection, the goal is to select a model as close to the true model as possible. In
other words, we’d like to minimize ] (f, g) over all possible functions g. The K-L distgnce
assumes that the true model, f, is fixed and only the approximating models, g;, are allowed
to vary depending on the known values of 8. As a result, Ef[log(f (z))] is a constant that
only depends on the unknown truth, so we can write I(f, g) = C — E¢[log(g(z]9)))-

Suppose we have two candidate models, g; and go. In this setting, if
—Ejllog(91(216))] < —Ey[log(9x(219))] = Eyllog(g1(=1))] > Ey[log(ga(xl6))],

then we could say that g; is closer to the true model than go.

In order to minimize the Kullback-Leibler (K-L) distance, the true model as well as the
parameters in the approximating model must all be known. Akaike (1973, 1974) developed
an estimator of the expected overall K-L Distance that he called “An Information Criterion”
(AIC). It can be shown that AIC' = —2log(g(x|6)) + 2K where K is the dimension of &.
We can think of —2log(g(z|6)) as a “fit” component with 2K serving as a penalizing term
when the models are overfit since the dimension of 6 is larger when the model is overfit.
AIC has a tendency to be biased in small samples with the bias leading to selection of
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GOV =13 (—9)°/(1-h)".

'GCV has been shown to be less variable than CV (Craven and Wahba 1979) and tends to

have higher correct selection rates than CV which will be shown in the simulation studies.

2.2 Full Cross Validation Theory

Full Cross Validation (FCV) is designed to help avoid the difficulties that can be enéoun—
tered with cross validation (Droge 1996) by not requiring the removal of any data point(s).
Itis definedas FCV = 3 (y; — i) ‘where §; is the least squares prediction of y; when
y; is substituted by ¥;, instead qf leaving it out, in defining the prediction at the i* design
point (Droge 1996). FCV can allow for estimation of MSEP in situations where CV fails,
however, it has a tendency to select overly complex models (Greenwood 5006). In the sim-
ulations, I will show that FCV becomes inéreasingly negatively biased when overfitting.
This leads to selection of overfit models more often since we are minimizing CV and FCV.

In either case, it is irﬁportant to note that complex models are undesirable. Often times
it is difficult or expensive to collect data on many variables especially if it is not absolutely
necessary for predictive accuracy. There may be situations when the model with the small-
est CV or FCV value is quite complicated, but there is another, simpler, model whose CV
or FCV value is close to the smallest CV or FCV value, say CV < (1 + §)CV for small
§ > 0 (Bunke, Droge and Polzehl 1999).

If we were to represent FCV in terms of the residuals from the linear projection model,

(¥: — ¥;)) can be shown to equal (1 + hs;) (% — @), which leads to

FCV =13 (14 hi)? (s — 6:)?
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2 Cross Validation vs. Full Cross Validation

2.1 Cross Validation Theory

Cross Validation (CV) gives an estimator of MSEP and is defined with respect fo n — 1
data points instead of all n data points for all n observations. It is defined as CV =
D DA (T g](i))z where §;) is the prediction of y; leaving out the it* data point, (x;, ;).
In other words, we want to divide the sample “into a construction subsample (of size n —
1) and a validation subsample (of size 1) in all (n) possible ways”v (Stone 1974). It is
important to note that CV based esimators have been shown to be asymptotically equivalent
to AIC in linear models (Li 1987, Shao 1993). One benefit of CV based estimators is
that there is no requirement of estimation of the error variance (Droge 1996) and it has
fewer assumpti;ms than AIC. Also, leave one out CV based estimators are fairly easy to
calculate. One drawback of CV based methods is that they can fail in some nonlinear
regression situations where parameter estimation algorithms may diverge for removal of
the i** observation. This occured for the nonlinear model simulations and will be discussed
in further detail later in the paper. |

CV can be represented in terms of the residuals in any linear projection model. As a

result, (y; — §¢;)) becomes m (y: — ;) which leads to
n A2
CV=137, (T:,lﬁf (vi — )

where h;; are the leverages, or diagonal elements of the “hat” matrix, H = X(X'X)~1X’.
Replacing each leverage with its average, h = > hii/n, leads to Generalized Cross Vali-
dation (GCV, Craven and Wahba 1979) where
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siniulations, with results preSeﬁted only from two of them since the results were similar
for the cases with high leverage observations. In the discussion that follows, a model is
considered underfit if the number of covariates in the selected model is fewer than the
number of covariates in the “true” model. An overfit model is one in which the number
of covariates in the selected model is greater than the number of covariates in the “true”
model. |

The means, variances, bias and percent correctly selected for each criterion are dis-
played graphically by model order in Figures 1 and 21 In the plots of the means and of the
biases we see that all criteria considered are positively biased when p < py. However, when
P > po, the cross validation based measures are positively biaéed and the full cross vali-
dation measures become negatively biased. In the plot of variances vs model order we see
that the variances for both CV and FCV based criteria decrease as p — py. As p becomes
larger than py, the variance of each measure increases although the full cross validation
based measures are less variable than the cross validation based measures.

For the parameters used in these simulations, FCV and GFCV are very unsuccessful
model selection criteria, performing even worse than AIC. Hurvich and Tsai (1989) show
that the bias in the AIC leads it to have poor ability to discriminate between overfit and
correctly specified models in small samples but that the AIC, corrects this small sample
bias and dramatically improves its model selection performance. By examing the model
selection results, we can make two important observations. First, FCV-based measures
tend to favor complex models. Second, the rate at which FCV selects overly complex

models grows with the order of the overfit model that is considered. Although these results
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where h;; are the leverages, or diagonal elements of the “hat” matrix, H = X(X'X)"X".
Replacing each leverage with its average, h = 3 h;;/n, leads to Generalized Full Cross

Validation (GFCV, Droge 1996) where
n N 2
GFCV =237 (yi—9:)" (1+R)".

Similar to GCV, GFCV has been shown to be less variable than FCV (Droge 1996) and
tends to have higher correct selection rates than FCV which will also be shown in the

simulation studies.

2.3 Linear model simulations

A simulation study is used in order to evaluate the performance and behavior of CV and
F CV based estimators compared with AIC. Independent Uniform(0,10) explanatory vari-
ables were generated for the results provided from the simulation. The response variables
are built as functions of a subset of the generated, random explanatory variables plus inde-
pendent, normal random errors with standard deviation 2.

Two different combinations of sample size and number of explanatory variables are
considered; cas:é I has five potential covariates, a true model that contains four, equally
important covariates (y; = 1 + 371?- + T2; + T3; + T4 + €;), and a sample size of n = 15.
Case 2 contains ten potential covariates, a true model that contains four, equally important
covariates, and a sample size of n = 25. Additionally, I explore the role of leverage
on different estimators by simulating the explanatory variables from either Uniform(0,10)
or Exponential(A = 0.10) distributions. Using an exponential distribution provides some

simulated models that contain high leverage points. This leads to four different sets of
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Figure 2: Results for Case 2, Nested Models (p*=5) from 15,000 simulation runs. FCV and GECV
are the lowest dashed lines in all panels except in (d) where they increase dramatically for higher

order models.
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Figure 1: Results for Case 1, Nested Models (p*=5) from 15,000 simulation runs. FCV and GFCV

are the lowest dashed lines in all panels.

are specific to this set of linear regression models, similar selection of overly complicated
models can be expected when using FCV in other situations.

In addition to the two cases discussed previously, I also considered a third case; all
possible linear combinations of 7 covariates with a true model of 3 covariates and a sample
size of n = 97. In this case, AIC, had the highest correct selection rates with the FCV-
based measures having the lowest correct selection rates. When considering how many
times each model was selected as one of the top 6 preferred models, Table 6 shows that the
FCV-based measures select the most complex model almost 3 times as often as AIC.,. Also,
it is interesting to note that the true model was nested within all of the models that were
selected by each of the criteria examined. This suggests that it is acceptable to examine

only nested models when considering the performance of the different criteria.



Order | CV | FCV | GCV | GFCV | AIC
0.03 |0.01 001 |0.01 0.01
0.11 {001 [0.05 |0.01 0.03
061 |0.11 031 |O0.11 0.15
53.06 | 40.31 | 54.3 | 4233 47.27
12.86 | 26.23 | 11.99 | 24.22 19.22

N hWwWN

Table 3: Case 1 where the true model contains 4 covariates (p*=35 including the intercept
term) and n=15. 15,000 iterations through model selection process, percentage of each
order model selected.

Order | CV | FCV | GCV | GFCV | AIC
2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 67.23 | 33.27 | 68.08 | 36.66 50.09
6 12.6 |[10.11 | 12.18 | 9.95 11.35
7 673 {741 |6.61 |735 7.52
8 451 | 793 1439 |785 6.7

9 349 {843 (329 |813 6.53
10 293 1204 289 |11.12 7.65
11 2.51 |20.81 [ 2.56 |18.93 10.17

Table 4: Case 2 where the true model contains 4 covariates (p*=35 including the intercept
term) and n=25. 15,000 iterations through model selection process, percentage of each
order model selected. '

eBo+Xp+e
= FreXpre

= ByeXbes

= freXter

where ¢* follows a Log Normal distribution. The model that may actually be desired

by the researcher is y = G3eX# + ¢ where Normal errors are considered, but the mean
structure is based on the log-transformation. The implication that is often overlooked when
fitting the log(y) version of the model is that the error structure is being changed from an
additive Normal error structure to a multiplicative Log-Normal error structure.
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) Order | MSEP |CV | FCV | GCV [ GECV
26.15 33.6 |32.03 [334 3222
18.12 26.18 | 23.47 | 25.79 | 23.77
11.17 17.24 | 14.19 | 16.76 | 14.46
5.33 6.31 |[465 (604 |4.78
5.6 7.17 | 458 [6.72 |4.74

AN bW

Table 1: Case I where the true model contains 4 covariates (p* =5 including the intercept
term) and n=15. 15,000 iterations through model selection process, mean of the criteria.

Order | MSEP |CV | FCV [ GCV | GFCV
2 27.38 31.63 | 31.12 { 31.57 | 31.17
3 19.14 23.55 1227 |2345 2278
4 11.64 14.78 | 13.86 | 14.69 | 13.94
5 4.8 506 |4.58 [5.01 |4.62
6 4.96 535 463 |527 |4.68
7 5.12 5.67 |4.67 |5.57 |4.73
8 5.28 6.04 |[4.67 |[589 |4.75
9 5.44 645 [4.66 |626 |4.75
10 5.6 6.93 (461 (668 |4.71
11 5.76 7.5 454 |7.16 |4.65

Table 2: Case 2 where the true model contains 4 covariates (p*=5 inclitding the intercept
term) and n=25. 15,000 iterations through model selection process, mean of the criteria.

24 CV & FCV in Nonlinear models

In the linear model simulation studies, we examined the linear model y = By + X3 + ¢
where ¢ ~ N(0,5?%). In many cases, the linear model may be inadequate and a nonlinear
model may need to be considered. One common approach is to model the log of the re-
sponse instead of the response itself. The model then becomes log(y) : Bo + X3 + € also
with € ~ N (0, a%), which s still a linear model for log(y). Exponentiating both sides, we

obtain the following:
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Model f(X) = XB+e |AIC | AIC, |CV | FCV | GCV | GECV

F (@2, T3, T4) 83.3[885 | 854|805 | 852 |8L.I
f(z2, T3, T4, T5) 673|721 | 682|652 | 695 |659
f(z2, z3, T4, Ts) 66.3 | 72 69.6 | 644 [ 68.7 |65
f(I2,$3,$4,.’D3) 70 75.2 71.1 1 66.2 | 71.5 68

f(za, x3, 4, T5, T6) 326 (306 {32 333|317 |329
F(za, T3, T4, T5, T7) 29.6 | 27.6 293|304 [292 |302
F (s, T3, 24, T6, T7) 30.4 | 292 |28.5(306 |30.1 |304
F(2, T3, T4, T5, Ts) 33.6 |31 |332]342 | 323 |344
f(z2, 23,74, g, X3) 32.7 | 313 323339 |32 334
f(z2, 23,4, 7, Z3) 31.1 1299 | 3121313 {307 |31.1
f(z2, 3,24, 25, Ts, T7) 12 8.7 11.7 1139 | 11.1 | 13.2
f(z2, 23,74, x5, Ts, Ts) 132 (95 112 1 139} 11.5 | 143
f($2,$3,$4,.’1;5,$7,$3) 13.519.2 11.9 | 15.7 114 154
f(1?2,$3,$4,$6,$7,l’3) 124 (9.2 11 15.1 11.2 139
f($2,$3,$4,1?5,$6,937, (L‘g) 4.6 1.8 3.6 5.9 34 5.6

Table 6: Case 3 where the true model contains 3 covariates (p*=4 including the intercept
term) and n=97. 1,000 iterations through model selection process, percentage each model
selected as one of top 6.

2.5 Nonlinear model simulations using y = GgeX% + ¢

For the nonlinear simulations, I examined all possible combinations of seven covariates
where the model was y = (,e*? + ¢ and the true model had 3 covariates. The potential
problems discussed in the prévious section arose during the nonlinear simulation study. As
a result, only 500 simulations were run. Similar to the linear model simulations, the ex-
planatory variables were independent, Uniform(-1,1) random variables with §; = (1,1, 1)
and a variance of 4 was used for the error terms. This small variance was used primarily
to provide numerical stability for the simulation runs. Additionally, I used a sample size of
n = 97 to mimic the setting of the prostate data set as clo§ely as possible. From Table 7, we

see that in the linear simulation study, FCV based measures performed the worst, selecting
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Model f(X) = X8 + ¢ AIC | AIC, [ CV | FCV | GCV [ GFCV
F(z2, 23, 24) 46.9 | 53.7 [ 498|454 | 502 [45.1
F(2, T3, 74, 75) 10293 |95 |98 [96 |104
F(z2, T3, 74, T6) 92 (91 |92 |95 |91 |94
F (2, T3, 4, 77) 79 (76 (73 |71 |77 |73
f(z2, 3, T4, 5) 10.6 | 9.8 107 1112 | 10,6 | 11.1
fza, 3, 24, 75, T6) 26 |18 |22 |26 |21 2.7
f($2,173,1‘4,l‘5,$7) 1.6 1.1 1.6 1.8 1.5 1.8
f(z2, 23, T4, 76, T7) 1.6 {13 15 (1.8 1.5 1.6
f(z2, z3, T4, T5, 28) 22 |16 1.8 27 (1.8 23
f(a:2,:r3,:c4,:z5,338) 19 |13 1.8 119 1.7 2
f($2,$3,$4,1‘7, .'L’g) 3.2 24 2.8 3.8 2.8 3.9
f(z2, 3, T4, 25, 76, T7) 06 {02 0.5 (08 0.3 0.7
f(.'Ez, T3, T4,Ts5,Tg, .’Eg) 0.3 0.3 0.3 04 0.2 03
f(za, z3, 24, x5, 27, Zg) 05 |02 04 |05 0.4 0.6
f(z2, 3,24, T6, T7, T5) 04 |02 (04 |04 |03 0.4
f(z2, T3, 24,25, 6, T7,78) [ 0.3 | 0.1 02 {03 (0.2 04

Table 5: Case 3 where the true model contains 3 covariates (p*=4 including the intercept
term) and n=97. 1,000 iterations through model selection process, percentage of each
order model selected.

When fitting the model, y = f(x), we are assuming that f (x) is a nonlinear function
of x. However, when f(x) is a linear function of X, we can consider it as a special case of
the nonlinear model and the results of this section will still apply.

One problem that may arise in the nonlinear setting is that the leverages have the po-
tential to be greater than or equal to 1. Such leverages are called superleverages and occur
because the hat matrix used to calculate the leverages is only an approximate projection
operator (St. Laurent & Cook 1992). Superleverages pose a problem for calculating CV
using the leverages and typical residuals. One implication is that if the leverage is equal to
I, then ﬁ- is undefined and if h; > 1, then (y; — 1)/ (1 — hy;) may not be approximately
equal to y; — g,‘;_l So in order to compute CV, all n models need to be fit. This can become

computationally intensive and may cause problems, especially during simulation studies.
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vored a model with two covariates, patient age and capsular penetration. AIC, GCV, and
GECV all favored the same model with three covariates; patient age, seminal vesicle in-
vasion and capsular penetration whereas CV and FCV favored the same model with five
covariates; prostate weight, seminal vesicle invasion, capsular penetration, gleason score,

and percentage of gleason scores that were a4 or 3.

AIC AIC, | CV FCV GCV GFCV
245 25 1456714567 245 245
25 245 1456 1456 25 25
1456 |15 4567 (24567 (1456 1456
1245 1456 (456 124567145 1245
145 145 245 4567 156 14567
156 156 |[2457 (245 125 145
125 125 {45 456 1245 156
15 12451145 145 IS5 125
1456745 156 156 2456 124567
2456 |2456)|2456 |[2456 1456715

Table 8: Top 10 linear models selected by each criterion for the prostate data set. Each
number responds to a particular covariate.

AIC AIC, Ccv FCV | GCV GFCV
12345 1245 345 |345 |1245 1234
1245 12345 | 457 {457 [12345 1245
245 245 45 1457|245 2345
2345 2345 35 3456 (2345 245
1235 1235 1457135 1235 1235
12345612457 [3456[3457[123456(123456
123457112456 (456 |45 12457 123457
12457 [123456(356 (456712456 12457
12456 [123457(45671456 |123457112456
2457 125 57 356 |[125 2457

Table 9: Top 10 nonlinear models selected by each criterion for the prostate data set.

In running the prostate data set through the nonlinear model selection process, CV
and FCV both chose a model with three covariates, while the rest of the criterion selected

16



the most complex model about 3 times as often as AIC,. For the nonlinear simulations,
- FCV based measures performed even worse than expected, selecting the most complex

model more than 6 times as often as AIC..

Model f(X) = goee™P*t¢ [ AIC [ AIC, [CV | FCV | GCV GFCV
F (@2, 3, 24) 794|858 (804|634 (82 |772
F(z2, x3, T4, 5) 69.6 744 |64 |556 |70.8 |67.8
fz2, z3, 24, T6) 64.8 1 67.8 159.8 (482 {656 |63.2
f(z2, 23,24, 27) 66 |[68.6 612526 |67.2 |64.8
f(.’l?g, T3,T4, .’L'g) 64.2 | 69 60 51 65.8 62.6
f(z2, 3, 24, 75, 6) 30 1294 |31 342 1298 {298
f(z2, 3, 24, T35, 77) 36.6 | 358 |39.8 (428 [366 |374
f(z2, T3, T4, T4, T7) 31.6 | 30.8 | 304 | 34 314 | 322
f(.’)?g, T3,T4,ZTs5, ICg) 33 31.2 38 37.8 | 32.6 32.6
f(.'l.‘z, T3,T4,Tg, SL's) 31 30.6 328322 30.6 31
f(za, 3, 24, 77, 73) 314 1316 338352 {318 |314
f($2,373,$4,$5,i1?6,.'177) 14.8 1 11.8 17.8 | 25 14 16.6
f(za, 3, 24, T5, T6, T5) 158 | 9.6 146 (244 | 13 17.2
f(x2, 3, T4, 75, T7, T3) 14 10.8 | 13.6 | 23.6 | 12.6 | 154
f(@2, 23, T4, T4, 77, T3) 13 10 13.8 1214 | 11.8 | 13.8
f(£2,$3,$4,.’l'5, 1176,.'137,338) 4.8 2.8 9 18.6 | 44 7

Table 7: Case 4 where the true model contains 3 covariates (p*=4 including the intercept
term) and n=97. 500 iterations through model selection process, percentage each model
was selected as one of top 6 nonlinear models.

2.6 Prostate Data Results

The explanatory variables in the prostate data set are prostate weight, age, benign hyper-
plasia amount, seminal vesicle invasion, capsular penetra;ion, Gleason score, percentage
of Gleason scores that are 4 or 5, and prostate specific antigen. For the model selection
process, these are numbered 1, 2,....8 respectively. The response variable is the volume of .
the cancerous tumor.

When I ran the prostate data set through the linear model selection process, AIC, fa-
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for generalized linear models.

In both the linear and nonlinear simulation studies, CV and FCV performed worse than
their respective generalized versions. Also, for both the linear and nonlinear simulations,
GCV and GFCV were better than AIC, but not AIC,. Based on the perfonnanc;: of the CV
and FCV based criteria in the simulation studies, I do not trust them complétely for the
prostate data results. However, in examining the preferred models across all criteria, there
seems to be several important variables; prostate weight, patient’s age, seminal vesicle
invasion, and capsular penetration. In spite of the fact that interactions were not considered
in either the simulation studies or the analysis of the prostate data set, the poor performance
of CV and FCV based criteria in these simple settings should be a wafning against using

them in more complex situations, including those which account for interactions.
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models with four or more covariates. For the prostate data set, AIC tended to favor more
xomplex models than . Also, based on the correct selection rates of CV and FCV based
methods in both the linear and nonlinear model simulations, it is likely that overfit models
were selected by both criteria. One rule of thumb that is often used is to see which models
have AIC values within 2 units of the model with the minimum AIC value. Those models
are then considered equivalent models. For the prostate data set, over 40 models were
within 2 units of the minimum AIC value. For simplicity, I chose to examine only the top
10 linear and the top 10 nonlinear models. Upon closer examination of the top 10 linear
(shown in Table 8) and the top 10 nonlinear (shown in Table 9) models selected, it became
apparent that the important variables are prostate weight, patient’s age, seminal vesicle

invasion, and capsular penetration.

3 Conclusions & Future Research

One problem that was seen with the FCV based criteria is that they have a tendency to
have large negative bias. One possible direction for fiture research would be to explore
this bias and try to determine if there is a correction factor that may decrease the bias in
FCV-based criteria. Another problem that is seen is the potential for superleverages. When
a situation occurs whére superleverages exist, the use of leverages in computing CV and
FCV based estimates of MSEP is impossible or very inaccurate. It would be interesting to
explore simulafions which force superleverages to exist. Finally, exploring the impact of
different types of error strﬁctures, such as Poisson or Binomial, oﬁ model selection would

be a natural next step in my research, potentially considering CV and FCV related measures

17






References

[1] Akaike, H. (1973), “Maximum likelihood identification of Gaussian autoregressive
moving average models,” Biometrika, 60, 255-265.

[2] Akaike, H. (1974), “A new look at statistical model identification,” IEEE transactions
on Automatic Control, 19, 716-723.

[3] Bunke, O., Droge, B. and Polzehl, J. (1998), “Splus tools for model selection in non-
linear regression,” Computational Statistics, 13, 257-281.

[4] Bunke, O., Droge, B. and Polzehl, J. (1999), “Model selection, transformations and
variance estimation in nonlinear regression,” Statistics, 33, 197-240.

[5] Burnham, K. and Anderson, D. (1998), Model Selection and Multimodel Inference.
New York, Springer.

[6] Craven, P. and Wahba, G. (1979), “Smoothing noisy data with spline functions: esti-
mating the correct degree of smoothing by the method of generalized cross-validation,”
Numerical Mathematics, 31, 377-403.

[7] Droge, B. (1996), “Some comments on cross-validation,” in W. Hardle and M. Schimek
(Eds.), Statistical Theory and Computational Aspects of Smoothing. Physica, Heidel-
berg, 178-199.

[8] Hurvich, C. and Tsai, C. (1 989), “Regression and time series model selection criteria,”
Biometrika, 76, 297-307.

[9] Kullback, S. (1968), Information theory and statistics. New York, Dover.

[10] McQuarrie, A. and Tsai, C. (1998), Regression and Time Series Model Selection.
Singapore, World Scientific Publishing Co.

[11] Schwarz, G. (1978), “Estimating the dimension of a model,” The Annals of Statistics,
6,461-464.

[12] Stone, M. (1974), “Cross-validatory choice and assessment of statistical predictions,”
Journal of the Royal Statistical Society-B, 36, 111-147.

19



	g1 1.pdf
	g2 1.pdf
	g1 2.pdf
	g2 2.pdf
	g1 3.pdf
	g2 3.pdf
	g1 4.pdf
	g2 4.pdf
	g1 5.pdf
	g2 5.pdf
	g1 6.pdf
	g2 6.pdf
	g1 7.pdf
	g2 7.pdf
	g1 8.pdf
	g2 8.pdf
	g1 9.pdf
	g2 9.pdf
	g1 10.pdf
	g2 10.pdf
	g1 11.pdf

