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Abstract

Existing genetic data contain a wealth of untapped information of value to ecologists.
One major area of ecological interest is the use of spatially point-referenced genetic data to
track individuals over a landscape, in an effort to delineate among separate breeding groups.
In this paper, we investigate a Bayesian mode! for inferring population structure and ranges
based on point-referenced genetic data. We assess the capacity of the model to correctly
assign individuals to populations, examine the model’s ability to accurately describe the
genetic structure of the original populations, and observe the accuracy of spatial mappings
of the model-generated populations. Additionally, we discuss limitations on the model’s

scope of inference imposed by making (or not making) certain assumptions.

1 Introduction

Genetic data analysis is rapidly emerging as a valuable tool in population and community ecol-
ogy. By tracking individuals genetically, researchers can better examine how population allele
frequency distributions differ with landscape covariates. Identifying such relationships subse-
quently leads to improved classification of individuals to populations and expanded knowledge
about gene flow patterns over space.

While techniques for dealing with classification on a strictly genetic basis are abundant
(e.g. Cavalli-Sforza (1971)), techniques for identification of barriers and generation of maps
for population epicenters have emerged only recently. A relatively new Bayesian hierarchical
model for landscape genetics conditions genetic data on point-referenced spatial location data
to infer the number, genetic structure, and spatial organization of populations over a landscape
(Guillot, 2005). The Bayesian model allows researchers to address questions concerning how may
populations are present, the rate at which these populations are drifting apart from a common
ancestral population, the ranges occupied by each population, and from which population an
individual arises. In this paper, we investigate this model’s performance over three criteria
(genetics, spatial distribution of populations, and individual assignment) via simulation.

1.1 Traditional Methods

Historically, genetic methods for classifying individuals to populations included use of the
Expectation-Maximization algorithm (e.g. Millar (1987)), multinomial likelihood approaches
(e.g. Cavalli-Sforza (1971)), traditional methods of multivariate classification analysis and mix-
ture modeling. Methods for examining the relationship between geographic covariates and pop-
ulations’ home-ranges include Mantel and partial Mantel methods (eg. Arnarud 2003, Banks



et al. 2005, Hitchings and Beebee 1997, Vignieri 2005), implementation of Moran’s I (Arnaud
2003), use of correlograms (Banks et al 2005), simulated annealing (Banks et al. 2005), use of
F-statistics (Hitchings and Beebee 1997), Monmonier’s algorithm (Liepelt et al. 2002), exam-
ination of spatial autocorrelation (Pfenninger 2002), PCA and kriging (Piertney et al. 1998),
neighbor-joining trees (Poissant et al. 2005), assignment tests, and information theoretic ap-
proaches (Roach et al., 2001) (list from Storfer et ol., 2007). '

Typical approaches for spatial analysis like those listed above fall short in landscape genetics
for a variety of reasons, but mainly because genetic data is typically observed as a multilocus
genotype. Therefore, the observations made on a single individual are not a direct measure-
ment of a spatial process, but rather, they are only meaningful when considered in conjunction
with other individuals’ or populations’ genetic structures. The challenge is that multilocus
data cannot readily be expressed as point data, so0 methods typically used for point-process
spatial analyses fall short. An additional major drawback to commonly used population genet-
ics statistics (eg. Fgr, Nei’'s D) is the requirement of an @ priori delineation of populations.
Since determining how many populations are present is often a study objective, such a priori
assumptions can compromise a study’s scientific integrity.

Bayesian approaches like those presented by Pritchard {2000) and Falush (2003) allow for
relaxation of the delineation requirement. Use of Voronoi polygons to introduce spatial in-
formation into population delineation (through an application of Monmonier’s algorithm) was
first put forth by Manni et al, 2004. Guillot’s model extends the work on Manni, Pritchard,
and Falush through the implementation of a spatial assigniment algorithm, which incorporates
Falush’s (2003} genetic modeling structure.

1.2 Genetic Data

Genetic data are categorical and multivariate by nature: an individual's genotype consists
of a set of genetic markers (loci) located at specific positions on the genome. Locations can
be chosen to be independent, either by using loci on different chromosomes or by selecting loci
that are located far enough apart on the same chromosome that recombination renders them
effectively independent.

The allele observed at each location is the outcome of a phenomenon that is assumed to be
random at several levels: Under an assumption of random mating, the parents’ genomes are
considered random draws from a population, and the particular allele that each parents passes
to its offspring is also random.

Because of this doubly-random process, we can think of an observed genotype as being an
outcome (a state) of a nested Markov process. The overall consequence is that a genotype is
essentially a realization of a string of independent (within a population) categorical random
variables.

2 Guillot’s Bayesian Hierarchical Model

Spatial models have been extensively developed for quantitative data, on the premise that indi-
viduals located in spatial proximity to one another are more likely to be similar than individuals
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who are located far apart. When spatial autocorrelation between individuals is not accounted
for, impacts of various environmental features on the genetic structure over a landscape are
generally overestimated, since spatial proximity acts as a lurking variable. Similar habitats are
spatially clustered, as are individuals from the same population. By failing to include spatial
proximity between individuals from the same population, the impact of environmental covariates
present in those locations may appear more pronounced than it actually is. This is a particularly
relevant concern in conservation ecology, where the specification of individuals to a particular
habitat is of paramount importance for targeting specific habitat types for preservation.

There are two main reasons for adopting a Bayesian approach for detecting spatial discon-
tinuities in allele frequencies over the landscape:

1. the Bayesian approach allows us to explicitly examine the statistical uncertainty associated
with each parameter of interest and

2. prior information (i.e. the spatial clustering of individuals over the landscape) can be
incorporated into the model as an additional information source (Falush (2003)).

Markov chain Monte Carlo (MCMC) techniques have been used extensively in genetics re-
search over the last ten years (e.g. Rannala and Mountain, 1997; Pritchard et al., 2000, Falush
el al., 2003). The premise of the genetics models is that observed individuals form a represen-
tative mixture from a set of populations of potentially unknown size. An individual can come
entirely from one population, or arise from two or more populations in a scenario referred to
as ad-mixture (Falush et al, 2003). The role of admixture individuals in Guillot’s model is
discussed later. All populations in the study region can be identified by a unique set of allele
frequencies at each examined location on the genome. Within-population allele frequencies are
assumed to be in Hardy-Weinberg equilibrium, and linkage equilibrium is also assumed for all
examined loci. Hardy-Weinberg equilibrium refers to situations where the following conditions
are met {Freeland 2005, pg 68):

1. within-population mating is random.

2. the alleles of interest are not under selection.

]

. the effects of migration and mutation are negligible.
4. population size is effectively infinite.
5. the alleles segregate via Mendelian inheritance.

Linkage disequilibrium can occur at two levels, a population level and a within-genome
level. At the population level, genetic drift of two current populations from a common ancestral
population results in genetic differentiation across all alleles. The allele frequency distributions
across all loci within a given population will be correlated with one another even if those loci
assort completely independently during meiosis. Population linkage disequilibrium refers to
this genome-wide, correlated divergence between several populations arising from a common
ancestral group.

At the within-genome level, linkage disequilibrium refers to dependence in assortment. That
is, two loci located close together on the same chromosome may occur more commonly in some



pairings (that is, pairings where crossing over didn’t occur between the two loci) than pairings
where crossing over split the two loci. Consistent recombination of one locus being associated
with recombination of another other is within-genome linkage disequilibrium (Freeland 2005,
pg 76). Additional background linkage disequilibrium may also exist, but it is not dealt with
explicitly in the models examined here.

Under the assumptions outlined above, the likelihood of a given genotype arising in a given
population is simply the product of the probability of seeing each observed allele in the given
population

2
L(alf) = [ i (1)
j=1
where ¢ is the genotype being examined, j is the population of interest, and [ is the number of
loci examine.

The net implication of these assumptions is that the probability of a given genotype, condi-
tional on the genotype originating from the 7** population, is the probability of obtaining a given
genotype from population j is the product of the probabilities of seeing each two-allele combi-
nation at each locus within a certain population. This relationship was thoroughly described by
Rannala and Mountain (1997) and is summarized below.

Bayesian analysis of genetic data was first introduced in Rannala and Mountain (1997), who
took advantage of the Dirichlet-Multinomial relationship to express observed genotypes as draws
from a Dirichlet prior. In their approach, The prior probability density of allele frequencies at
the 7** locus in the i** population is as follows:
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After conditioning on the sampled alleles from a given population, the posterior probability
density of allele frequencies is
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where f§ = n;; + 1 (Rannala and Mountain, 1997). This prior-posterior relationship forms the
groundwork on which most Bayesian analysis of population genetics is conducted (e.g. Pritchard
et al. (2000), Falush et ol (2003), Corander et al. (2003)). This is a modification of the
parameterization for common Dirichlet distributions.

It is worth noting that for very small populations, Hardy-Weinberg equilibrium is lost due
to increased inbreeding levels. This problem was recognized in Francois et al. (2006)’s follow-up
to Guillet et al.’s model.

In order to extend this genetic formulation to include spatial variables measured on each
individual, consider samples to be draws from a joint probability distribution containing allele
frequency distributions from the population of origin, conditional on the genotypes of sampled

~individual. This probability distribution cannot be sampled from directly, so the samples are

derived using a Markov chain (Pritchard et al., 2000). Inference using Monte Carlo Markov
Chain (MCMC) algorithms is described in section 2.3.1.

2.1 Entry of Information into the Model

Model inputs are genotypes and point-indexed spatial locations for individuals. Spatial clus-
ters (“cells”) of individuals with similar genotypes are identified. Depending on how distinet
allele frequencies within a cell are from the other cells, a cell may be identified as its own pop-
ulation or may be grouped with other cells with similar allele frequencies elsewhere to form a
single population. A prior favoring fewer cells makes it more likely that cells within close spatial
proximity to one another are collapsed into a single population. Locations of clusters are driven
by location of individuals on the landscape, and within-cluster individual relatedness.

The implication here is that a continuous group of individuals actually composed of two
adjacent, but separate, populations, could be identified as two separate cells (based on their
distinct allele frequency distributions) as opposed to one cell based on their spatial locations.
Using the genetic data alone to identify individuals to populations would ignore the information
that the two populations are located side-by-side. Researchers obtain the most complete picture
of population distribution over the landscape by using both the spatial and genetic informa-
tion. Additionally, using the spatial model allows for identification of spatially discontinuous
populations.

The degree to which spatial information drives the model is controlled by a Poisson
random variable, which defines the number of cells present on the landscape. A Poisson point
process over the landscape lays out a set of points which form the centers of the cells. Then,
each point within the space is assigned to the cell whose center is nearest. This forms a Voronoi
tiling of the sampled region, which will be discussed in the next section. Higher estimated values
of the Poisson parameter indicate more cells and greater spatial mixing among populations.

For example, consider a situation where only two clusters are identified and define two
distinet populations. In this setting, the model would suggest that only two populations exist,
and that spatial mixing between those two populations is very low, so very few cells are needed
to describe the spatial organization of populations over the landscape. In a scenario with high
spatial mixing, the model incorporates more and more cells, therefore increasing the estimate
of the Poisson parameter, until each individual occupies its own cell in a homogenously mixed
setting.



2.2 Hierarchical Spatial Model

The model assumes that a representative sample is drawn from panmictic populations sepa-
rated by geographic borders (i.e. rivers, mountain ranges, etc.). The initial stage of the model
is a specification of the spatial organization of the populations. Statistical representation of the
genetic properties of the various populations are then specified conditional on the spatial orga-
nization. Formally, we sample from joint posterior distribution of the parameterization given
space (t) and genetics (z),

(B¢, z) {5)
where 8 = (K,m,u,c,d, f, f4,s) The iikelihood can be written as

n L

7(t,216) = n(t1)m(zlt,0) = n(el6) [] [T w(zi.10). (6)

i=11=1

Inference about the elements of # are then made through the posterior distribution, w(8|¢, z).
This hierarchy is laid out in Guillot et al., (2005).

Comnsider K different populations occupying a spatial domain, A, such that A can be parti-
tioned into K different subdomains, each occupied exclusively by a single population. Let Ay be
the spatial domain of population K. Each population’s subdomain is approximated by a union
of convex polygons. This assumption does not limit the shape of the population’s subdomain,
since any shape can be approximated in this manner as long as an adequate number of polygons
is used.

The centers of these polygons are modeled as random variables distributed uniformly over
the entire spatial domain. This is analogous to saying that a homogeneous Poisson point process
with some realization (u1,up,...,u;) is present over the landscape. Each point in the process
defines a set A; around it, such that A; includes all points closer to u; than to any other u. Each
set A; is then a convex polygon, and the set of all A;s is a Voronoi tessellation of the region,
A. Assume that each A; contains individuals from only one population. This allows us to label
gach A; with a population, effectively ”coloring” that Voronoi tile.

Now, consider a set of individuals distributed over the partitioned landscape. An individual
is assigned to the population label for the set A; in which it is located.

2.3 Full Bayesian specification

The overriding assumption of this model is that some spatial dependence exists among in-
dividuals spread over a landscape. If no spatial dependence is present, Guillot’s model should
default to Falush's genetic model, since under no spatial dependence, each indidivual should
get its own cell in the posterior, A should then be close to the number of indidivuals sampled,
and individual locations should be uniformally distributed over the sampled region. The model
relies on a priori information on individual locations and spatial organization. Guillot’s model
generates estimates of the ancestral and current population allele frequency distributions, the
drift rate for each current population from the ancestral population, the spatial organization of
subdomains over the landscape (as characterized by the intensity of the Poisson point process,
and the location and population assignment of each cell), and error in the observed locations of



individuals based on recorded individual locations and genotypes. Priors for each unobserved
guantity are tabled below.

Parameter | Description Prior Hyper- Subjective Input(s)
Prior
K Number of Popu- | Discrete Uniform | - Usually, minimum = 1;
lations maximum = number of
individuals sampled
m Number of Tiles | Poisson Uniform on | Hyper-prior  bounded
in Voronoi tessel- Lambda above by the number of
lation individuals sampled
{u1, ..., um) | Location of center | Uniform over the | -
of each cell entire spatial do-
main
€ Population Uniform - Takes on values between
(" color™) to 1land K
which a tile is
assigned
A Population sub- | - - Union of all Voronoi
domains tiles assigned to a par-
ticular population
d Drift (degree of | Uniform(0, 1) or | - Selection of the particu-
genetic  differen- | Beta (2, 20) lar prior can be driven
tiation among by knowledge of pge-
existing popula- netic differentiation be-
tions) tween populations on
the landscape
fa Frequencies of an- | Dirichlet (1, ,1) | -
cestral alleles
f Frequencies of | Dirichlet {1-d/d, , | - Driven by parameteri-
current alleles 1-dk/dk) zation of d
5 Actual {as | Suitable paramet- | - Distributional form for
opposed to | ric  distribution epsilon
recorded) individ- | for epsilon in t =
ual location s + epsilon

2.3.1 Markov chain Monte Carlo inference

In order to obtain the joint posterior distribution of the parameters, a Monte Carlo Markov
chain (MCMC) algorithm is used. The objective of the MCMC algorithm is to sample from the
joint posterior distribution of the parameters given space and genetics,

(8|t z) (M)

where 0 = (K,m,u,¢,d, f, fa,5), a vector containing all unknown parameters defined in
Table 1. Then, the likelihood of the data (¢, z) can be expressed as in equation (6) above.




Through the Monte Carlo Markov chain simulation we generate a Markov process in the
space of the parameter vector, #, which converges to the joint posterior distribution for the
parameters. Two important assumptions implicit in using the Markov chain simulation are that

1. the stationary distribution of the Monte Carlo Markov chain is specified to be the posterior,
and

2. the simulations are run long enough that the distribution of draws is close to the specified
stationary distribution.

In Guillot et al's MCMC algorithm investigated here, starting values are randomly initialized
from the prior.

The defining feature of Monte Carle Markov chain simulation is that samples are drawn
sequentially, so that the distribution of the sample draws depends solely on the last value drawn.
The method works because the approximate distributions from which samples are drawn are
improved with each step of the chain (that is, they converge to the target distribution). This
differentiates MCMC algorithms from importance sanpling, where the distribution from which
draws are made remains the same throughout the entirety of the sampling process (Gelman,
1995) .

2.3.2 Implementation of Gibbs Sampling

Gibbs sampling is used when the complete conditional probability distribution of the variable
of interest (conditioning on all other parameters in the model) can be stated explicitly, and can
be written in clesed form, but the posterior distribution cannot be expressed in a closed form. For
example, in Guillot et al.’'s MCMC, a Gibbs step is appropriate when updating the present allele
frequencies from the ancestral allele frequencies because the conditional distribution of present
allele frequencies given ancestral allele frequencies and drift parameters can be writien out in
closed form. That is, conditionai on ancestral alleles and drift parameters, we can explicitly
express the probabilities associated with the present allele frequency distributions. Because
the complete conditional distribution can be stated explicitly (although a closed form of the
posterior cannot), this is a case where Gibbs sampling is appropriate.

2.3.3 Implementation of Metropolis-Hastings Updates

In general, the Metropolis-Hastings algorithm is used to get a sample from a distribution. One
way it can be implemented is to sample from a complete conditional distribution within a Gibbs
sampler. Metropolis-Hastings updates are used when the complete conditional distribution
cannot be explicitly stated, but instead must be simulated as a set of draws from the parameter
space describing the conditional distribution. For each update, the algorithm proposes a new
draw of a parameter, and the density for the new parameter value is compared to the current
value evaluated at the last parameter value. If the density at the proposal value exceeds the
current one, then the current value is rejected in favor of the proposal value. Then in the next
step the old proposal value is treated as the current value. If the density at the current value
exceeds the proposal, then the current value is retained and a new proposal in the next update
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is compared to the current value (Gelman, 1995). In Guiliot ef al’s model, Metropolis-Hastings
updates are used for the drift parameters and allele frequencies, parameters for which complete
conditional distributions cannot be stated in a closed form,

Inference about the elements of  will be made through an investigation of its posterior
distribution, m(#|t,z). A hybrid Gibbs sampler (a combination of Metropolis-Hastings and
Gibbs updates for various parameters in the posterior) based on sequential updates of blocks
of parameters is used. All parameters are randomly initialized from the prior, and subsequent
moves are made as follows:

1. Update drift parameters, d {(Metropolis-Hastings update)

Update the ancestral allele frequency distribution, f4 (Metropolis-Hastings update)
Update the current allele frequency distribution, f (Gibbs update)

Update the coloring of each Voronoi tile, ¢ (Metropolis-Hastings update)

Update the location of each tile center, 1; (Metropolis-Hastings random-walk update)

@ ok W

Update the error term associated with each individual, s (Metropolis-Hastings random-
walk update)

7. Add or discard a tile (randomly choose between a birth or death of a tile, with equal
probability. If a birth is chosen, propose a new random point in the current state, whose
location is drawn from the uniform prior. The coloring of this tile is drawn from the
discrete uniform prior on population labeling of tiles.)

8. Split or merge existing populations

Convergence of the MCMC on the stationary distribution (the posterior) follows from bal-
ance, irreducibility, and aperiodicity. Convergence was taken to have been achieved based on
the diagnostic plots show below for drift, and others examined for the other parameters.

3 Investigation of Guillot et al’s Model

Ecologists hoping to implement Guillot ef ol’s model are immediately presented with several
dilemmas. They must decide whether they will use a model that assumes the allele frequency
distributions for their assorted populations of interest are independent, or they will treat al-
lele frequencies as correlated (since they actually arose from a common ancestral population).
Guillot does not allow estimation of K in the correlated version of his model, due to consistent
overestimation. Thus, the ecologist is presented with a second dilemma: what is the tradeoff
between using the correlated model with K set a priori and using the uncorrelated model, which
doesn’t accurately model the actusl biological process, but has the capacity to estimate K more
accurately? If they choose to fix K, how do they select an appropriate value for K?

What are the implications of using the mode! that includes no spatial information, as opposed
to including spatial information in the prior, in either the correlated or uncorrelated cases? How
does the model deal with admixture individuals who arise from multiple populations of origin?

11
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Finally, what limitations to scope of inference does selection of a certain model impose? The
objective of the remainder of this project is to address each of these questions.

3.1 Simulation Study

The impact of using the correlated vs. uncorrelated framework is of interest for several reasons.
The uncorrelated model allows for estimation of K from the data, while the correlated model
requires a fixed K. However, the uncorrelated model does not represent the process by which
genetic data arises as accurately as the correlated model. Of the models we examined, only the
correlated model with spatial information uses the spatial hierarchy laid out in Guillot et al’s
work. In order to compare modeling capacities for the two models, we conducted a series of
simulations. Data were simulated using five models:

1. The correlated structure and a known number of populations (Correlated K)
The uncorrelated model with K set a priori (Uncorrelated K)

The uncorrelated model with K estimated through the model (Uncorrelated, no K)

oW

The correlated model relying on genetics alone {Correlated, no location)
5. The correlated model with spatial information included (Correlated with location).

The models were compared by maps they generated of the original populations, through use of
a statistic measuring assignment accuracy, and in terms of how closely model and parametric
ailele frequency distributions overlapped.

3.2 Model Comparison

The objective of the Guillot model is to accurately define genetic populations on a landscape,
both in terms of population ranges and population genetics. Ranges can readily be compared
via maps of the true population ranges and the ranges inferred by the model using simulated
data. Relatedness among the true populations can be compared to relatedness among the model
populations via Wright's Fgp. A useful model should exhibit between-population relatedness
that approximates relatedness in the true populations, produce maps that correspond well to
true maps of population distributions over space, and attain a high rate of common assignments
between the true populations and the model populations. Failure of the model in each of these
criteria (genetics, space, and assignment) will be examined separately.

3.3 Estimating K, the Number of Populations

Estimation of the number of populations present on the landscape is fundamentally linked
to how related two groups of organisms are "allowed” to be before they are considered to be
members of the same population. In this model, that decision is guided by a combination of
information from the observed data (in the form of clusters of indidivuals with similar allele
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combinations) and the prior distribution placed on the drift parameters (referred to as F in
Falush et al., 2003, to indicate its relationship to Wright's Fgr).

If the prior on drift favors low values of Fgr, then the cut-off point for distinct populations is
lowered, and groups that have similar (but not identical) allele frequency distributions are more
likely to be defined as separate populations. Falush et al. {2003) emphasize the relationship
between the drift parameters and the effective population size of a given population since the
time that population diverged with the common ancestral population. Thus large values of the
drift parameter correspond to smaller effective population sizes. Falush et al., relying on the
advice of Nicholson et al. (2002) suggest the use of a truncated gamma as a prior for the drift
parameters, whereas Guillot et al. (2005) suggest a Beta (2, 20). Falush emphasizes that the
"harshness” (that is, the weight the prior places on low values of drift) manifests itself as the
degree to which the model differentiates between populations. So, a harsh prior on low values of
drift corresponds to settings where Fgrs are low, which is appropriate when there exists strong
information that populations are closely related (Falush et al., 2003).

Guillot et al.’s correlated no-location model tends to overestimate the number of populations
present on the landscape, to the degree that Guillot et al. advise users to fix K from the outset In
an effort to avoid relying strictly on expert opinion, we experimented with using the uncorrelated
model to estimate the number of populations present, and then applying that estimate as an a
priori parameter for calculating the correlated spatial model. This approach failed: the number
of populations estimated by the model increased steadily with increasing genetic differentiation
between the populations.

We modified our initial approach by estimating K using the uncorrelated meodel, fitting
the correlated spatial model, and then combining populations based on minimal pairwise Fgr
values until the correct number of populations was reached. This approach worked well in some
cases, but poorly in others. In some situations, the additional populations are fragments of
the actual populations, so combining populations with the smallest pairwise Fgrs worked well.
However, in some cases the additional populations are genetic intermediaries between the two
actual populations. In this case, all pairwise Fgrs are very similar, so selecting two populations
to combine becomes somewhat arbitrary. Since no acceptable solution was readily available for
estimating K, we advocate using expert opinion to guide a priori selection of the K parameter.

3.4 Justification for Overlooking the Admixture Model

Guillot et al. discourage using Falush et al.’s model which allows for admixture (the possibility
that a single individual arose from multiple populations). Falush et al’s admixture model did
not perform well in Guillot et al.’s scenario where genetic data was conditioned on location, an
unsurprising result when one considers the objectives of Guillot et al.’s model as compared to
an admixed model. :

Decisions about the inclusion or exclusion of admixed individuals in models speaks to the on-
going discussion of what exactly a biological model is (see, for example, Waples and Gaggiotti,
2006). Guillot et al’s model tries to draw boundaries among discretely breeding groups in order
to examine what boundaries exist on the landscape, thus a population is taken to be a breeding
group. If admixture is occurring, then by definition the groups determined by the model are
not breeding discreetly. Furthermore, inclusion of admixture is difficult to model from a strictly
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genetic perspective under the parameters defined above because it presents a ridge-type scenario:
the same data could be interpreted as two highly diverged populations with lois of admixture
or two subtly diverged populations with no admixture. Those two situations would produce
(nearly) indistinguishable genetic data, so the model wouldn't be unique. This problem alone
is enough to drive researchers away from using the admixed approach to modeling genetic data
at all, let alone over space.

3.4.1 Genetics

The major feature separating the uncorrelated model from the two correlated ones is that the
uncorrelated model makes no assumption about populations drifting from a common ancestral
population. As a result, closely related populations may be virtually indistinguishable from one
another in terms of allele frequency distributions at a single locus. It is combinations of alleles
across several loci that make one population identifiable from another. In the uncorrelated
model, the covariance across loci is taken to be negligible. Although two populations may be a
certain distance apart at each locus, there is no multi-locus clustering of alleles, so populations
that are measurably different when taken in the multivariate, correlated context appear identical
in the uncorrelated model. By contrast, once population differentiation passes a certain threshold
value (in Figure 3, that value appears to be roughly .22), the allele frequency distributions within
a single locus are distinct enough to distinguish between populations, so the uncorrelated model
starts to perform as well as its correlated counterparts. These results are in line with results
reported in Falush et al., 2003,

3.4.2 Individual Assignment

The decision about which model to use (correlated with and without space, uncorrelated with
and without allowing the number of model populations to vary) will frequently be driven by
guestions about how well the model assigns individuals to populations. At first glance, this seems
like a straight-forward question of assignment rates, but since the populations defined by the
model are not necessarily labeled the same as the true populations that exist on the landscape,
running a traditional assignment assessment using a classification procedure is inadequate.

An alternative approach which does not rely on assuming that model populations are the
same as true populations is to compare matrices describing which individuals are assigned to the
same population in the model to block diagonal matrices describing whether individuals were
simulated from the same parametric population. The distance between the parametric matrix
and the model matrix provides a measure of how well individuals are assigned: very low distance
between the two matrices indicates good assignment; high distance indicates poor assignment.
A measure using this basic idea structure was defined in Francois et al., 2006. It is the error
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Model~defined Fst as Function of True Fst
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ERCA as a function of Relatedness
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rate in coassignment (ERCA), and is
2
ERCA= gy D (1= bayjzhats) (8)

where 0y, ; z—hat,; 15 the Kronecker product of indicator variables for whether the ith and jth
individuals were in the same simulated population (z; ;) and whether the i** and j** individuals
were in the same model population (z—xj ;). See Figure (4) for ERCA as a function of relatedness
for the various models examined here.

3.4.3 Spatial Distribution on the Landscape

Complexity of the maps generated by the different models are best compared by simply
examining the maps. Maps of posterior probabilities of belonging to one population are shown
for three models: the uncorrelated model with K fixed to be two, the correlated model withont
spatial information, and then correlated model with spatial information.

3.5 Impact of Model Choice on Utility

Each of the four models examined contains slightly different assumptions. In the uncorrelated
model when the munber of populations is fixed, the genetic model relies heavily on expert. opinion
about the number of populations present. Assumptions about K limit the clustering patterns
available for the data, so all inference must be made conditional on K being equal to the sei value,
By contrast, the models that are allowed to estimate K are not limited to inference conditioned
on K; their inference extends to all possible values of K {however, these inferences are somewhat
limited in their accuracy depending on the prior placed on K and that prior’s influence relative
to the data). The correlated model generates data in a biologically realistic manner, giving rise
to correlation across multiple loci that may not be accounted for in the uncorrelated model,
thus it may out-perform the uncorrelated model at low Fgps. However, further consideration
of the stochastic processes underlying constant migration vs. recent population divergence is
necessary to provide sirong biological evidence to corroborate this suggestion.

One great strength of the spatial model is that by conditioning on space, additional in-
formation about how individuals are clustered over the landscape is allowed into the model.
Traditional genetic methods have not conditioned on space, which poses limitations because
apparent clustering of genetic data when space isn’t accounted for may actually be simply a
model where location, a latent variable when not explicitly conditioned on in the model, drives
the measured variables, genotypes.

If mapping population boundaries is the primary goal of a study, the conditional model is
probably best, since it does the best job of getting spatial population boundaries correct, and

~if a study’s primary goal is to describe genetic clusters, conditioning on space is appropriate in

order to remove the latent influence of location if space isn’t conditioned on. In short, if there
are biclogical questions best addressed by a model of genotypes alone, we are currently unaware
of them, and feel that the model conditioned on space offers the most advantages.
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it is critical to recall that these spatial models are intended to represent only the spatial
distribution of individuals over the landscape at a single point in time. No inference as to the
point of origin or movement patterns for modeled individuals can be inferred, since temporal
arrangements are not accounted for in this modeling scenario.

4 Alternative Approaches

Inchision of spatial data as prior information in delineating among breeding groups appears
to have great potential. Under simulation, the models that include correlation among indi-
viduals who are located in close spatial proximity to one another do a better job of correctly
classifying individnals to populations, accurately reflecting population Fgrs, and describing the
distribution of populations over the landscape. The exclusion of admixed individuals from spa-
tial moedels is not limiting, since the whole obiect in using spatial information is to determine
geography barriers between breeding groups, and the presence of admixed individuals allows
for the assumption that breeding groups over the landscape are not discreet. The uncorrelated
model fails at low Fgrs because it does not account from the natural correlation that arises even
among independent loci within a population. By contrast, the correlated models that account
for that relationship perform well at low FgT's.

The next application of Guillot et al.’'s model is probably to combine or allign it with Francois
et al.’s {2006) model using Markov random fields for improved estimation of the K parameter.
Francois et al. present a method that improves performance of the K-estimate by using reg-
ularization, a technique for prevention of overfitting through the introduction of additional
information into a model, generally in the form of a penalty for complexity. Common uses of
regularization include ridge regression, lasso estimators and feedforward neural networks. In
this case, the authors use a Bayesian clustering algorithm that employs hidden Markov random
fields as priors for the clustering confipurations. Early examinations indicate that the Francois
et al. model does a better job of estimating K than any of the other models examined herein.

Several additional alternative approaches for delineating between genetic populations over
space have emerged in the last several years. Methods include

1. Manel et al.’s use of overlaid probability maps for each individual’s genotype over space,
generated through a moving-window approach, Maps are fit for all individuals, and then
a composite map showing regions of maximum change in probabilities is built. Regions of
intense change indicate population boundaries.

2. Corander et al’s application of another Bayesian hierarchical model, which is similar
to Guillot’s, but which doesn’t rely on the Voronoi tessellation for delineating among
populations in space,

We are unaware of literature at this point in time that uses frequentist appreaches for conducting
the genetic clustering analysis. While frequentist methods do exist, the literature has moved
in a largely Bayesian direction (e.g. Rannala and Mountain {1997), Pritchard ef ol (2000),
Corander et al. (2003}).
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5 Conclusions

Guillot et al’s model for landscape genetics represents a major advance in the methods
through which researchers approach genetic data. The hierarchical structure Guillot et af. apply
to space could easily be extended to other covariates {e.g. birth location for humans, distin-
guishing phenotypic characteristics that may impact breeding, etc.), allowing for genetic models
conditioned on other measured covariates besides just location. However, even this adjustment
does not expand model inference beyond the cross-sectional picture of time mentioned above.
Furthermore, it has been shown that the hierarchical model outperforms its non-spatial coun-
terparts in terms of mapping populations over the landscape and in assignment of individuals
to populations (Guillot et al., 2005). Due to these strengths, we expect the prevalence of this
moedeling approach in genetics to increase dramatically over the next few years.

It is essential that researchers recognize that models like the Guillot ef al. (2005) model
described here only address the first of Manel (2003)’s two-step process for landscape genetics.
After the genetic populations are accurately mapped, researchers will want to allign genetic maps
with maps containing relevant landscape features, to investigate whether genetic boundaries
correspond with landscape features. This second step of the landscape genetics process, however,
can only be conducted accurately when the location of the various genetic populations is well
understood. Though their model doesn’t always work ideally, Guillot et al. provide a key step
toward accurate map construction.
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