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1. Introduction

Accurately predicting the outcome of whether or not an accepied student will
enroll at a particular school aids in efficient allocation of available limited resources, such as
time and money. Knowing approximately how many students will enroll based on how
many students are accepted can shape admissions policies, determine on-campus housing,
and generally assist an institution in being more prepared to meet the academic needs for its
incoming {reshmen,

One of the most practical applications of the statistical sciences is the ability to create
models using existing data in order to predict the outcome of future events. Statistical
modeling is a data-based science that uses patterns in observed variables to provide an
overall mathematical structure to real-world happenings. Topics such as global warming,
consumer spending, and cancer risk have all been studied extensively using statistical models.

The general linear model is one of the oldest frameworks for the statistical modeling
of an existing phenomenon. 'The more recent and similarly named generalized linear model
(GLM) was developed to model commonly occurring responses that violate the
distributional assumptions of ordinary least squares (OLS) regression.

This paper will use a specific generalized linear model, logistic regression, to
formulate a model that can be used to make such predictions regarding college enrollment.
The use of a generalized linear model is necessary, as the binary distribution of the results of
whether or not a given student enrolls (a set of 0’s and 1's) must be modeled using the
binomial distribution. Binary data clearly do not follow a normal distribution, making
ordinary least squares inadequate for dealing with such a response. A generalized linear
model, on the other hand, can directly use the Binomial distribution to model the non-

normal response,



2. 'The Generalized Linear Model

2.1 The Model

First formulated in a 1972 paper by Nelder and Wedderbumn, the generalized knear
model (GLM) is an essential part of modern statistics. Linear regression, ANOVA, probit,
logistic regression, and Poisson log-linear models are all types of GMLs. Due to their ability
to be applied in situations where the usual assumptions regarding the normal distribution for
linear models are clearly not met, statisticians use GLMs for a wide variety of applications in
a number of different fields, from medical to actmarial sciences.

As an example, suppose one is interested in developing a model for a situation with a
response variable that takes on only two possible outcomes, termed binary or dichotomous.
Important decisions such as determining whether cancer is present or absent from the
results of a medical test, or predicting if a startup company will or won’t succeed are
examples of situations based on binary response variables. Ordinary linear regression
requires an assumption that the response variable follows the continuous normal distribution
with variance that is constant across all mean values. For modeling such dichotomous
categorical responses, the binomial distribution becomes the appropriate assumed
distribution (Hosmer, 1989). Allowing the response to follow a discrete distribution such as
the binomial or Poisson cannot be done in an OLS model, but is possible with GLM.

For the GLM, the random component of response variable is assumed to follow any
member in the class of distributions known as the exponential family, which is described
later in this section. Important exponential family distributions for modeling frequently
occurring processes are the Poisson, binomial, geometric, exponential, and normal
distributions (Casella, 2002). 'The general framework for the model is given by the following

equation (Hosmer, 1989)
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As in any linear model, a GLM consists of a linear combination of the explanatory
variables and their regression coefficients. A GILM has the distinction that this linear
predictor is related to the expected value of the response through a function called the link
function (Flosmer, 1989). This appeats as the function g{) in the above equation. The only
necessary requiremnents for the link function are that it be monotonic and differentiable
(Myers, 2002). Many different links are used, from the identity function for a normal linear
OLS model, to an exponential function. The logarithmic function is a simple example of 2
frequently used non-linear link function:

g(pi) = log(ys;)

Closely related to the log function is another non-linear link function, the logit,
described in detail in the following section. Logistic regression uses the logit as its link
function. The ability to use both linear and non-linear link functions enable researchers to
model a variety of relationships between the mean of the response and predictors. As a
result, the GLM is a unification of linear and non-linear models (Myers, 2002).

As previously mentioned, another important aspect of the GLM is that it allows
the assumed distribution of the response to be any distribution included in the exponential
family (Hosmer, 1989). Given parameters ¢ and data, x, the exponential family is defined as

any variable with a probability density function (or mass function), as follows
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Where / and ¢ are functions depending solely on the data, and cand ware functions
depending solely on the parameters (Casella, 2002).

Regression coefficients are estimated in 2 GLM by the method of maximum
likelihood (Ramsey, 2002). Generally speaking, the maximum likelihood estimate for a
given parameter is the value making the observed data most likely. The likelihood function
calculates the probability that the parameter takes on a particular value given the observed
data. The maximum likelihood estimate is obtained by finding the value that maximizes this
likelthood function (Casella, 2002). As a result, the method of maximum likelihood can be
applied to a variety of situations with different distributional assumptions as long as the
likelihood function can be explicitly stated.

Depending on the distribution specified for GLMs, it is possible to model responses
where the variability depends on the mean, unlike models created under the assumption of
the normal distribution that require the variance to remain constant for all mean values.
Again suppose that Yis a dichotomous response variable and follows a2 Bemoulli
distribution, a simple distribution describing the outcome of a single observation of a binary
random variable. Denote the probability of success for an individual observation equal to 7.
It can be shown that (Casella, 2002):

EY)=m

and

Var(Y) = (m)(1 — 7).



These results make it clear that the variance is not constant, but rather is a function of the
mean. For binary outcomes, the Bernoulli distribution describes the outcome of a single
observation with a given probability of success. The binomial distribution can be used to
model the counts of successes of independent and identically distributed Bernoulli trials for
a fixed number of observations. As a result, the Bernoulli distribution is special case of the
Binomial distribution where the number of trials is equal to one.

As another example of non-constant variance, for modeling the probability of the
number of events occurring for a fixed amount of effort, the response is often assumed o
follow a Poisson distribution. A random variable with a Poisson distribution has variance
exactly equal to the mean, or the expected value (Casella, 2002). ‘Therefore, with a response
variable assumed to follow either the Bemoulli, binomial, or Poisson distribution, the
variance is a function of the expected value. By using such distributions, a GLM can allow
for the variance of the response to change with the value of the mean, whereas an OLS

model assumes the variance in the response remains constant.

2.3 The Logit Function

Probabilities are commonly used to describe the likelihood of random events based
on the long-run frequency of occurrence. An alternative expression is the use of odds.
Denote the probability of a successful outcome for a given binary event as z. By definition,

the odds in favor of a success 1s

In other words, it is the ratio of the probability of a successful outcome to an unsuccessful

one., For example the odds in favor of rolling a six with one roll of a fair six-sided die is



The interpretation is that that the event of rolling a six is five times less likely than the event

of not rolling a six. The odds in favor, or against, a certain outcome is a concept often used

in the context of gambling,
The logit function, in the context of a binary outcome, is defined simply to be the

log of the odds (Hosmer, 1989).

logit(m) = log (1 1 ) :

The logit function serves as the link function in the logistic regression model.

3. Logistic Regression

3.1 Overview

The logistic regression model is a commonly implemented GLM, fit to a response
that is assumed to follow a binomial distribution. Such responses include an individual
binary response (Bernoulli trial) or responses that are binomial counts, meaning they are the
counts of successes of independent Bernoulli trials for a group of a known size. Logistic
regression can also be extended to model multinomial counts. This paper will deal strictly
with its binomial applications.

Binary logistic regression on an individual assumes the response variable conforms to

the following distributional assumption:
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In other words, the individual observations of the response are Bernoulli trials, each
with a potentially distinct probability of success (Casella, 2002). These are two of the most
widely used applications for a GLM. Often these individual binary outcomes are indicators
of a “success” or “failure”. With this type of data, binary logistic regression is frequently
used to estimate the probability of a successful outcome. Binomial logistic regression is also
used for modeling the success for a given sample size of identically distributed Bernoulli
random variablés (Casella, 2002)It is in these practical and simple applications that logistic
regression has been found to provide a myriad of uses in 2 broad range of fields such as

biology, epidemiology, and economics.

2.2 The Logistic Regression Model

For a logistic regression model using p different explanatory variables, denote the
probability of a success for a given set of realizations of these p variables as

7(%). If g()is the logit function, then the framework of the model is given by the

following equation (Hosmer, 1989)

7(£)

g(m(Z)) = log [1_—7‘_(5)

]=&+@m+&w+m+%%

The logit function links the linear predictor to the expected value of the response. Like all

link functions, the logit is one to one and is therefore invertible. By solving for 7(3) the



relationship between the linear predictor and the probability of success is evident. This

equation is known as the logistic function (Hosmer, 1989):

@=L =
Tm = - = ——
14+ek 14+ ek
where

k = ,BQ + ﬁlxl -+ ,82.‘]52 + ...+ ﬁpmp.

According to basic axioms of probability, it is clear that #(¥) cannot be negative or

greater than one. Therefore an appropriate mode! will restrict the possible values of #(%)

to this interval. ‘The logistic function achieves this as its domain is equal to the real numbers,
while its range is restricted to values between zero and one (Hosmer, 1989).

Another reason why logistic regression is a good model for many different real-world
phenomena is the shape of the logistic curve. Itis an S-shaped curve, well-suited for
modeling many observed processes such as population growth that are characterized by
rapid change during the middle values of the argument between periods of slower change at
the extremes.

Figure 3.0 illustrates this S-shape by graphing a simple case of the logistic function
where k =x.
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Figure 3.0: Curve of the logistic function

In contrast, using OLS to model #(¥) makes this probability exactly equal to a

linear combination of the predictor variables.

E(m(Z)) = Bo + Biz1 + faza + ... + Loy

The OLS model where the mean response is the probability of a success has no
restrictions on its output, and therefore could lead to nonsensical predictions, such as
predicted probabilities greater than one (Hosmer, 1989). Also, an OLS model assumes that
the random error, after accounting for the above mean structure, is normally distributed.

This is clearly not correct when the only values the response can take are 0 and 1.

3.3 Assumptions

For a researcher to be confident in any inferences made with logistic regression,
certain assumptions must be met. A major assumption shared with OLS is that the

observations need to be independent from one another. Also, as with an OLS model,
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logistic regression requires a linearity assumption. While OLS assumes the covariates to be
Tinearly related to the mean of the actual response itself, logistic regression assumes that the
linear combination of the independent vanable is linearly related to the logit of the mean
response, or the log odds in favor of a success (Myers, 2002).

For continuous explanatory vanables there are a limitless number of possible values,
and as a result, multiple observations sharing the same value is unlikely. Binning a
continuous variable into categories enables one to estimate the proportion of success in each
category. Therefore the probability of a success for a certain range of values can be
estimated using the proportion of successes in the response for each corresponding range of
the explanatory variable (Hosmer, 1989). The assumption of linearity of the log odds can be
checked for each continuous variable individually by transforming these estimated

probabilities to the log odds scale, called empirical logits.

3.4 Interpretation of Logistic Regression Coefficients

In addition to calculating the estimated probability of a success, the regression
coefficients from a logistic model provide information about how each covariate is related to
the response. As noted previously, the logistic regression model equates the linear
combination of the explanatory variables and their coefficients to the log odds. Therefore,
the regression coefficient for a given variable is the change in the log odds for a one unit
change in that particular explanatory variable, assuming all other variables are held constant
(Allison, 1999).

Since the change in log odds is a difficult quantity to give a meaningful interpretation
10, regression coefficients are often transformed to produce a more applicable value, an odds
ratio. An odds ratio is the ratio of the odds of an event occurning for a given realization of

the variable to the odds of the same event occurring when the realized value is increased by



one unit. Since logistic regression often models the probability of a success given particular
values of the explanatory variables, the logistic regression model can be used to derive the
odds ratio for changing values of a particular explanatory variable.

As a simple example, suppose you want to determine the odds ratic when %, is an
indicator variable for group and takes on the possible values of 0 and 1. For this example
assume that all other independent variables are held constant. By manipulating both sides of

the logit function we can see that the odds of a success when x, = 1 is given by

(&)
1 — (%)

?
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and therefore the odds of a success whenx, =0is

8'80 +61(0)+B2za+...+Bpxyp .

Finally, the odds ratio of these two particular groups is given by

6ﬁ0+51 (1)+B2x2+...4+8pTp
eﬁo +51(0)+Paza+...4+0pTp

_ 651

Notice that all the other terms in the exponent cancel because only the value of x, was

changed. Therefore, calculating e results in an odds ratio and therefore can be interpreted



as how much more likely (if e# >1), or less likely (if ¢” <1), the outcome of interest is

depending on the group that observation falls ino (Allison, 1999).

3.5 Prospective vs. Retrospective Studies

Generally, there are two types of approaches when collecting binary data. To
illustrate these types, suppose one is interested in using the presence of or absence of lung
cancer as a response variable. The first approach is a prospective study randomly selecting
individuals with certain values of explanatory variables, such a frequency of smoking, and
watching them over time to determine whether or not they develop cancer. In this situation
the number of successes and failures is not fixed by the researcher. The second approach is
a retrospective study, where the individual patients are chosen based on having lung cancer
ornot, Thus, the number of successes for a retrospective study is fixed by the researcher,
whereas in a prospective study it is not. Retrospective data has the advantage of being
cheaper and easier to collect, as a potentially lengthy study involving observing subjects over
time is not necessary. The disadvantage to retrospective data is that prospective probabilities
cannot be estimated.

While probabilities regarding future observations can only be made using prospective
data, the odds ratio is the same regardless of whether the study is prospective or
retrospective, Furthermore, it is the only calculable quantity that has the same interpretation
whether one is referring to events that have already happened or events that are yet to
happen (Ramsey, 2002). As we have seen, for a logistic model, an odds ratio is a simple
function of the regression coefficients for explanatory variables, and thus inference can be
made for both types of studies using logistic regression. Since making predictions from a
model involves estimating a probability, not simply an odds ratio, you cannot estimate the

probability of an event happening in the future from a retrospective study.



4, Validation

4,1 The ROC Curve

A receiver operating characteristic (ROC) curve is a graphical, nonparametric
method for measuring the accuracy of a predictive model. First used by radar operators in
World War IT to correctly classify whether a given signal was a plane or just random noise,
ROC curves are a way to evaluate and compare the ability of predictive models to correctly
classify observations from a set of given predictors. Although ROC curves can be
constructed using a variety of model validation techniques, this paper will implement the
cross-validation technique used by SAS in PROCLOGISTIC, a leave one out process.

The estimated probability of success produced by the logistic function is a
continuous variable. In order to use this continuous probability to classify an observation as
one of two possible outcomes, a predetermined cutoff value must be specified. An
estimated probability above this cutoff will result in a prediction of a success. An estimated

probability below the cutoff will result in a prediction of a failure (SAS Institute Inc., 1995).

4.2 Binary Classification

For understanding the mechanism behind an ROC curve 1t is helpful to start with a
confusion matrix, A confusion matrix is simply a truth table placing the outcome of a
prediction into its possible categories. Confusion matrices come in several forms. Only the
2 x 2 case categorizing binary outcomes will be examined, as it is the basis for constructing

the ROC curves cotresponding to our candidate models.
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Figure 4.0: Confusion matrix for a binary outcome

The labels on top row of figure 4.0 refer to the truth of whether an observation is
positive (a success) or negative (a failure). The labels on the left side correspond to a
prediction from the model of either success or failure. An event correctly classified as
positive is referred to as being a true positive outcome. Likewise, an event incorrectly
classified as positive is referred to as being false positive. For negative predictions, a correct
prediction is classified as being true negative, and an incorrect prediction is false negative.

A ROC curve looks at how the predictive power of a particular model changes as the
cutoff value for making predictions is altered. As mentioned previously, the cutoff value is
necessary to transform a continuous estimated probability of success into a binary outcome.
In particular, a ROC curve examines the tradeoff between correctly and incorrectly
classifying positive outcomes. For a given cutoff value, the proportion of actual positives

that the model correctly categorizes is known as the sensitivity.

true positives

sensitivity = : ‘
erativly true positives + false negatives



Similarly, the proportion of actual negatives that the model correctly classifies is known as
the specificity (SAS Institute Inc. 1995).

true negatives

speci ficity = :
pect ficity true negatives 1+ false positives

A ROC curve is simply a connected line graph of the sensitivity vs. (1 - specificity) for
different values of the cutoff point. Another interpretation is that a ROC curve plots the
true positive rate against the false positive rate. "The unit square shown in figure 4.1 graphing

the sensitivity vs. (1-specificity) is the sample space for a ROC curve.
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Figure 4.1: The ROC Curve sample space.

Simply randomly classifying points for various cutoffs results in a 45° line across the
ROC sspace. For an illustration of this, imagine the cutoff point for any chosen model is a
probability of zero. As a result, every observation will be classified as a success and the
sensitivity will be equal o one. However, the specificity will be zero as no actual negatives

are correctly identified. ‘This results in a point on the uppermost right-hand corner of the



ROCspace. A similar argument illustrates that setting the cutoff point to one results in a
point on the lower left hand comer of the ROC space.

4.3 Model Evaluation

The best predictive models are those with both high sensitivity and high
specificity for a given cutoff value, This results in a point towards the upper left-hand
corner of the ROC space. Therefore, the higher a ROC curve is above the 45° line, the
more accurate that model is at making predictions for different cutoff values. Area under
the curve (AUC) is a statistic that evaluates individual models and can compare models to
one another. The closer an AUC value is to one for a given model the more predictive
accuracy that model has. The interpretation of the AUC itself is that for a given model, if
one randomly selects an individual with a observed response corresponding a success, and
an individual with an observed response of failure, the AUC is the probability that the model
assigns a higher predicted probability of success to the individual with the observed success

than to the one without. (Delong, 1989)

5. Application of Binary Logistic Regression

5.1 A College Enroliment Problem
Every year colleges in the United States undergo a process of collecting applications
from potential students and deciding which individuals to accept. Out of these individuals
that are accepted, only a subset actually enrolls, Colleges are interested in c-ontrol]ing the
number of incoming students each year, as either too many or too few attending students

can result in substantial problems such as a decrease in govemnment funding or a lack of on-



campus housing for the incoming students. Therefore, 2 model for estimating the
probability that a student who is accepted will enroll is a valuable asset.

Logistic regression will be implemented for modeling the probability than an
accepted student at the University of North Carolina at Asheville (UNCA) will actually enroll
based set values of the explanatory variables for that student. The data set was generously
provided by Archer Gravely, the head of institutional research at UNGCA. The focus of this
paper is limited to the prediction of whether or not a student will attend, and not on
interpreting the regression coefficients for particular explanatory variables included in the
model.

5.2 The Data

This paper will use a data set collected from all applicants to UNCA during the
period of 2005 to 2008. The response is binary, with categories corresponding to whether or
not the student enrolled at UNCA. The data set includes 14 possible covariates, ranging
from categorical variables such as race, sex, and NC residency status to continuous variables
such as high school GPA, SAT math score, and ACT score.

A possible hindrance to the stated goal of making an accurate, usable predictive
model 15 that many data values are missing from the UNCA data. For example, often
students did not take the both the SAT and ACT, or a student came from a high school
where class rank is not computed. The missing data is fairly widespread. Out of 7158
individuals in the entire data set, 6598 of them have at least one missing value for the 14
possible independent variables. Further complicating matters, the proportion of missing
values for different variables varies widely. For example, only 56 students did not report a

total SAT score, while 5621 students did not report an ACT score.



While it is true the data set contains a significant proportion of missing data, many
combinations of the possible covariates are likely to contain similar information and
therefore have significant correlation. Examples of this inchude GPA with weighted GPA,
and total SAT score with ACT score. Missing information between correlated variables is
less significant than between independent variables, as the information contained in the
missing variable may still be present in any correlated variables. A more significant problem
exists with any individual missing all the variables that contain the same type of information,
Missing data can lead 10 a biased model if there are systematic differences between those

students who provided a value fora partieular variable and those who did not.

5.3 Types of Missing Data

Generally speaking, there are three possible types of missing data. The easiest type
to work with is data missing completely at random (MCAR). These data exist when missing
values occur randomly among all observations. In other words, every possible observation
has an equally likely chance to be absent. A fortunate result of MCAR data is that since the
missing data is a random sample of the entire sampled population, no systematic differences
exist between those individuals with missing values and those without, Therefore MCAR
data can be ignored with little or no effect on the accuracy of a particular model.
Unfortunately, true MCAR data is a relatively rare phenomenon.

A second category is data missing at random (MAR). Data are said to be MAR if the
probability of a value being absent is distributed uniformly among a subset of the entire
sample. Within each of these subpopulations, the probabilities of any particular data value
to be missing are equal. However, these probabilities are not equal among every individual
in the sample. An example of MAR data would be if all females in the UNCA data set are
more likely to have taken the ACT and report their scores than the males,



The third type of missing data, and the hardest to correct for, is non-ignorable missing
data. Here, the individuals with missing data points are systematically different from those
without missing data points. However, the cause of the missing data cannot be fully
explained by individuals belonging to certain subsets of the sample. Non-ignorable missing

data is likely to create bias in any results and is extremely difficult account for (Cherry, 2008).

5.4 Exploratory Data Analysis

The full UNCA data set has 4866 individuals with complete information for the
eight variables as well as the response. Using these individuals and these nine variables, a
new data set is constructed that will be used for the analysis in the remainder of this papet.
The continuous variables with complete information are high school percent rank, high
school yield (the proportion of individuals from a particular high school who enrolled at
UNCA over the last 10 years), weighted high school GPA, and scores on both the math and
verbal sections of the SAT. Three categorical variables are also used, the first being
geogtaphic region of residence, with three levels for inside of NC (Eastern, Piedmont and
Western) and one pertaining to out of state. The final two categorical variables considered
are sex and race.

For our modeling purposes, the population of interest will be seen as any student
with complete information for these nine variables. Within the dara set corresponding o
this population, no individuals were left out, and the data can be seen as a representative
sample. Therefore, any models made from this dataset can be used to make inference on the
entire population,

Examining the distribution of the response over each of the categorical variables is

important as having too few individuals for any particular combination can cause problems

in the numerical methods used to calculate the regression coefficients for the logistic model.



In particular, any variable that has a category with all successes or all failures will lead to
serious problems for the iterative numerical techniques used to estimate regression
coefficients (Hosmer, 1989). For example, preliminary model building resulted in
convergence problems as the category for RACE pertaining to Native Americans had fewer
than 10 observations total across all four years. To avoid this problem, this category was
condensed into “other”.

Figures 3.1, 3.2, and 3.3 each display a possible categorical explanatory variable with
color coding according to whether or not a student enrolled. These figures are further
divided according to year. Year was not included as 2 potential variable, as the goal is for a
predictive model. However, examining the distribution of each variable separated by year

provides a quick visual check on any possible strong differences between years.

7007

Frequency

T B LA
T ¥

FM FM F N F M Sex
2005 2006 2007 2008 File Year
Enroll Status

O mm 1

Figure 5.1: The Distribution of gender separated by enrollment and grouped by year.



From figure 5.1, the msun difference in the distribution of gender between years is
the total number of individual applicants, with 2007 having the most and 2005 with the least.
Proportionally, the distribution of enrolling students between males and females is fairly
similar across the four years the data was collected. Also, within each gender, the proportion
of enrolling students appears to be relatively similar, casting doubt on the usefulness of using

sex in to predict whether a given student will enroll.
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Figure 5.2: Region of origin separated by enrollment and grouped by year.
The categories for within North Carolina are E = Eastern, P = Piedmont, and
W=Western. The ‘O’ corresponds to out of state.

From figure 5.2, the distribution of region of origin has slightly more variability from
year to year than gender does. Most notably, the proportion of applicants from the eastern
part of North Carolina was substantially lower in 2005 than the other three included years.

The distribution of enrolling students within a given region is relatively homogenous

from year 10 year. Notably, the proportion of accepted students from western North



Carolina for any given year is substantially higher than for any other region, This is an

indicator that region may be a significant predictor of whether or not a student enrolls.
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Figure 5.3: Race separated by enrollment and grouped by year. The categories are
A=Asian, B=Black, O=Other, § = Hispanic, U=Not Reported, and
W=White.

The trend for the distribution of race that is immediately evident is the
predominance of white applicants. Every year has at least 900 white applicants, with no
other race having more than 50 applicants. Similarly to gender, the year to year differences
in the distribution of race by enrolling appear minimal. Due to the extremely low level of
non-white applicants, a visual comparison of the distribution of enrolling students between
the different races is difficult. As a result, figure 5.3 provides little information as to the
significant of including race in a predictive model.
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Figure 5.5: Weighted GPA vs. High School Class Rank separated by categorical variables.
Starting at the top left and moving clockwise, the categorical variables used

are sex, region of ongin, whether or not the student enrolled, and race.




Empirical Logit

The plots of weighted GPA against class rank from figure 5.5 exhibit a denser, more
linear pattern than the previous plots in figure 5.4 showing SAT scores. Few strong
differences appear ﬁhen examining the distribution of GPA and class rank separated into
different categories. However, one apparent trend is that for a given value of class rank,
students from the Piedmont appear to have higher weighted GPAs, on average. Since
weighted GPA seems to depend, at least partially, on which region the individual is from,
including an interaction term between weighted GPA and region in our model could
increase its predictive power,

As a visual check of the linearity in the logit assumption, each of the five continuous

variables is binned into six ordered categories. A graph of the empirical logits for each of

these six categories for all five continuous variables is given in figure 5.6.

-1

Category
#-% Pct Rank ‘o2 Yarbal SAT

Figure 5.6: Empirical logits of five continuous variables binned into six categories.



Figure 5.6 gives evidence that the linearity assumption is a reasonable one. No strong
curvature exists in the empirical logits between the different categories for any of the five
examined variables. This plot also makes it clear that, aside from HS Yield, no variables
have serious changes in the empirical logits across their different categories. The dynamic
nature of the change in high school yield with relation to enrollment is expected, as it is a
variable corresponding to the proportion of enrolled individuals from that high school over
the last 10 years. This general lack of change in most variables can be mterpreted as there is
little difference in the sample log odds in favor of a student enrolling as the category for that
variable changes. A lack of strong differences in empirical logits for changing values of a
given explanatory variable is an indication that the predictive accuracy for any model based
on these variables may be limited.

5.5 Model Building

Since including significant interaction effect is likely to enhance the predictive
accuracy of our model, a rich interaction model using the eight original variables is fit first.
This full interaction model uses all possible two-way and three-way interactions, as well as all
possible quadratic effects. Although predictive ability is the main goal of our model, for the
sake of simplicity, a reduced interactive model is created by removing highly non-significant
terms from the full interactive model.

A likelihood ratio test comparing the rich interaction model to one without all the
three-way interactions is conducted. 'This test gives strong evidence that the two models are
not significantly different, so it is concluded that the three-way interaction are unnecessary.
As with the main effects only model, backwards elimination based on the Wald Statistics is
used to further reduce this interactive model one vatiable at a time. Any term with a p-value

less than 0.5 is left in the model, as anything with even a slight contribution to predictive



power is desired. Quadratic effects for high school yield and verbal SAT score are removed,
as well as seven two-way interaction effects. A likelihood ratio test comparing the full
interaction model with the reduced interactively model confirms the results of the individual
Wald Statistics.

After preliminary investigation of the individual variables, a full additive model using
the eight variables previously defined is fit to the data set. The individual Wald statistics
provided by SAS are a preliminary indicator of whether or not each individual predictor is
statistically significant given this particular model. However, many authorities prefer the
likelihood ratio test as it tends to be more reliable, because it is not based on a normal
approximation (Allison 1999). Using the drop-in deviance to remove one variable at a time
through backwards elimination, this full additive model is reduced to a six variable model
with RACE and REGION removed. 'This reduced additive mode along with estimated

coeficients and standard errors is given

ZOQW:E)) = —0.83 + 4.63(High School Yield) + 0.35(W cightcd GPA)

(0.37) (0.26) {0.14)
~0.03(High School Percent Rank) — 0.0028(Math Sat Score)
{0.0038) (0.00055)
—0.0012(Verbal Sat Score) — 0.063(Sex).
(0.00045) (0.035)

Overall, this model selection process results in four candidate models that will be
compared in the context of prediction:
1) Full Interaction Model

2) Reduced Interaction Model



3) Full Additive Model
4) Reduced Additive Model
The question of how successful any of these models are at actually predicting
whether or not future students enroll is one that has yet to be addressed. Evaluating the
predictive accuracy of any candidate model is necessary as even the best model from a
candidate set can tum out to be an unsatisfactory predictor of the response. ROC curves

will be used as a method of evaluating the accuracy of the four candidate models.

5.6 ROCPlots

The remainder of the analysis focuses on using ROC curves and the resulting AUC
values to estimate the predictive accuracy and provide comparisons for the four candidate
models that can be used to predict whether or not an individual student will enroll at UNCA.
Also included, as reference points for the four models created earlier, are 2 simple logitistic
regression model using weighted GPA only, and a model using only an intercept.

Figure 6.1 is the actual ROC curve from the leave one out validation conducted by
PROCLOGISTIC on the UNCA data for the full additive model using all eight explanatory
variables. The SAS macro ROCPLOT is used to plot the output from PROC LOGISTIC.
The estimated AUC is included.
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Figure 5.7: ROC curve for full additive model
As with all ROC curves, the curve in figure 5.7 starts at the lower left-hand comer of the
ROC space comresponding to a cutoff value of one, and ends at the upper right hand comer

as the cutoff point is gradually lowered to zero. ROC curves for these six different models

overlaid on the same plot are given,
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Figure 5.8: Overlaid ROC curves from four candidate models and two reference models

As evidenced by figure 5.8, the four candidate models all have similar ROC curves. The full
interaction model, shown in black, has the highest ROC curve for most cutoff points, The
reduced interaction model, shown in pink, has a curve that is slightly lower than the full
interaction model for most curoff values. The ROC curves for the full and reduced additive
models fie just below the curves for the interaction models. The reference models have
significantly lower ROC curves. The model using only GPA, in green, has a ROC curve

much closer to the line of no discrimination. Using the intercept only model results in a



ROC forming a 45 ° line across the ROC sample space. This is expected as an intercept only
model is equivalent to randomly classifying information,

5.7 AUC Contrasts

While an ROC curve is a quick way to assess the predictive power of a given model,
a statistical examination of the AUC results is necessary for scientifically valid conclusions as
to how models compare in terms of predictive accuracy. This analysis is done for the six
models examined previously by implementing the SAS macro “ROC” to find AUC values
with standard errors for the each of the individual models. 'The ROC macro is also used to
test all fifteen pairwise comparisons between the models using contrasts. The analysis used
by the ROC macro to compute these values is based on theories from a 1989 paper by E.,
Delong, D. De Long and D. Clarke-Pearson. 'The following table provides individual

estimates of AUC along with standard errors and 95% confidence intervals:

TG M e -min

DoLER D L S OSRAEEERL S il Talave ST e T

ROC Curve Areas and 95% Confidence Intervals

Model ROC A.rea'j Std Erroré Confidence Limits

+ Interactive Full 1 0.7065 1 0.0078 | 0.6912 10.7218

| Interactive Reduced | 0.6990 | 0.0079 | 0.6835 | 0.7146

| Main Effects Full | 0.6820 | 0.0081 | 0.6670 | 0.6988

| Main Effects Reduced | 0.6818 | 0.0081 | 0.6659 | 0.6077

| Weighted GPA Only | 0.5392 | 0.0087 | 0.5221 1 0.5563

| Intercept Only 105000 {00000 |05000 |0.5000

The full interaction model has the highest overall AUC with a value of 0.7065, while
the reduced interaction model trails slightly with an AUC of 0.6990. The full and reduced



additive models have similar AUC values of 0.6829 and 0.6818 respectively. The model
using only weighted GPA has a substantially lower AUC of 0.5392. As expected, the
intercept only model resulted in an AUC of 0.5 with zero variability.

Contrasts are used to evaluate whether or not these observed differences in the
calculated AUC values are statistically significant. Of the fifteen contrasts tested, all the
pairwise comparisons are found to be significantly different except for the comparison of
the full additive model to the reduced additive model., Overall, the full interaction model has
the highest AUC curve by a statistically significant margin, suggesting it is better than all
other models at classifying whether or not a student will actually enroll.

For the two main effects model models, the contrasts suggest there is no significant

difference in predictive accuracy. Since the reduced model only uses five variables, ROC
analysis suggests that the reduced main effects model is preferred over the full model. This
is in agreement with the conclusions from the drop in deviance tests performed previously.
Using ROC curves, in addition to likelihood ratio tests, provide a non-parametric measure to

compare different models.

6. Conclusion

6.1 Model Selection

Four candidate models are presented here, each with their own strengths and
weaknesses. For example, the three-way interactions in the full interaction model provide an
additional amount of predictive power, but at the expense of complicating the model. The
reduced interaction model is less complicated than the full interaction model and is still
significantly than either of the additive models at predicting enrollment. It is notable that
the finding of a statistically significant difference between models according to a hypothesis



tests may be largely due to the size of the same. Using almost 5000 individuals allows AUC
values to be estimated with a high degree of precision, resulting in statistical significance
where the practical implications might be minimal. As a visual reminder of this, on the ROC
- plot in figure 6.2, the curves for the two interaction models are not easily distinguishable, yet
the AUC suggested that they are significantly different.

If the lack of parsimony is not a serious issue to an administrative official, the full
interaction model provides the highest degree of predictive accuracy as determined by the
hypothesis tests on the AUC values. Assuming the cost of a false negative and false positive
are equal, a cutoff point can be selected that maximizes both the sensitivity and the
specificity. Interestingly, these values simultaneously reach a maximum of approximately
0.63 when a cutoff value of 0.33 is selected. Visually, 2 maximum value of specificity and
sensitivity for a given model occurs at the point of intersection between the ROC curve and
a 45° tangent line. Applying this idea to figure 6.2 makes it evident this intersection occurs
at a cutoff point of about a third.

6.2 Model Predictions

Using this full interaction model, it is possible to examine specific estimated
probabilities of enrolling foz;h(ldividua]s. The highest estimated probability of enrolling from
any individual in the UNCA data was 0.99954, with a 95% confidence interval of 0.98281 to
0.99999. He is a white male from an out of state high school with a yield of 24%. His high
school rank was the 69" percentile, with a weighted GPA of 5.65 and no reported
unweighted GPA. His standardized test scores were 580 on the math section of the SAT,
520 on the verbal section, and a 20 on the ACT. For any reasonable cutoff this individual is

classified as enrolling at UNCA, which, it turs out, is a true positive prediction.



The lowest estimated probability of enrolling is 0.10964, with a 95% confidence
interval of 0.00051 to 0.43999. This individual is a black female from a high school in
eastern North Carolina with a 18% yield rate. She graduated in the 97" percentile of her
class, with a weighted GPA of 4.45 and an unweighted GPA of 3.87. Her scores on the
math and verbal sections of the SAT were 640 and 690 respectively. She did not end up
enrolling at UNCA, which is also the conclusion the model makes for a cutoff value of one-
third. Another interesting point is that the cutoff point of 0.33 lies within the 95% (I for
the probability of enrolling for this individual. Basing predictions on simply the point
estimate of enrolling is necessary in order 1o make sure every individual is classified into one
of the two possible categones.

There are a number of distinctions regarding these two individuals with very
different estimated probabilities of enrolling. Varables such as gender, SAT scores, and high
school year rate are all different. 'This simple examination makes it impossible to determine
if the difference in estimated response is caused by a single variable or a combination of

vanables working separately or together.

6.3 Discussion

Parametric techniques requiring distribution assumptions such as the likelihood
ratio tests and non-parametric graphical measures such as ROC curves have been used to
evaluate different binary predictive models. The most complex interaction model was
determined to have the highest absolute predictive power as measure by the area under its
ROC curve. However, further investigations are necessary to determine how practically
useful this achieved level of predictive power is. Altermative methods such as generalized
additive models (GAM) or regression trees might also be successful for making predictions

from this type of data.



Using multiple statistical methods to analyze a situation is typically a sound practice.
The full interaction model had a significantly higher predictive power than all the others as
judged by a test statistic and a p-value. However, the visual comparison provided by the
ROC plot casts doubt upon the practical importance of these differences. Also, the analysis
in this paper is limited to validation using leave one out, and could possible be improved by
conducting similar ROC analysis using other types of validation, such as extemal validation,
or leave many out. ROC curve analysis based on multiple validation techniques that picked
the same model would give further credibility to that model being preferred.

Regarding the creation of a model that provides the greatest predictive power when
used on incoming students, the missing data should be addressed further. A model that is
able to make predictions on all applicants, not just those providing the right combination of
variables, will have much greater uiility. Problems arise when attempting to predict whether
or not a student will enroll using any model including variables that student does not
provide. Froma data collection standpoint, a more standardized admissions survey might
result in 2 higher overall completion rate for a certain variables. Even merely reducing the
proportion of missing data to a manageable quantity allows for the potential use of
imputation techniques for filling in missing values.

The generalized linear model provides a substantial framework for many different
types of data. For a binary response variable, logistic regression is well-suited for making
future predictions based on previously observed data. Furthermore, in this moder era,
computer programs such as SAS can be used to quickly fit a variety of models and
implement sophisticated model assessment techniques, to aid in the development of
predictive model that can potentially save time and money.

Predicting whether or not a student will enroll is a complex issue, as many different

variables are simultaneously affecting whether or not that student enrolls. As an example of



this, consider the weighted GPA variable. When a simple Iégistic model is fit with only this
variable, the higher the GPA the less likely a student is to enroll. However, the individual
with the highest estimated probability of entolling was also the individual with the very
highest weighted GPA out of almost 5000 individuals. A useful statistical model must
successfully, and simultaneously, include the effects provided by multiple measureable
characteristics of that individual in order to make accurate and reliable predictions. A
successful predictive model could potentially result in the savings of hundreds of thousands
of dollars for a given university.
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