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Abstract

Flectrodes implanted into the cerebral cortex of a macaque moenkey allow one to
observe a wide range of electrophysiological activity. Several methods exist for handling
neurophysiological data, some of which rely on Fourier transformations, spectral power anal-
ysis or spatial-temporal modeling. I take a different approach where I consider neuronat
signals emanating from cortical tissue as a sample of functions to be modeled. These func-
tions are the consequence of a preliminary smoothing process, applied to observations taken
discretely in time based on a millisecond frequency recording of the neuronal signals. The
functional data analysis framework offers the required flexibility to reproduce the character-
istics of the electrophysiological activity, and curve clustering is performed in an attempt to
characterize a dynamic change in these activity patterns between locations. Analysis of fune-
tional maps, generated by considering locations with similar signals, by comparing distance
matrices provides an idea of the expected time window over which one can observe a rela-
tive homogeneity of brain connectivity. The proposed methadology provides information on
functional connectivity in the brain, establishes a framework to produce maps of distributed
brain activity over a window of time, and addresses a question of possible similarity of the

patterns of distribution across time.

1 Introduction

The data in this study comes from an ongoing neurophysiology study investigating the neural
processes that underlie visual perception. The recordings were taken by Dr. Charles Gray’s lab
at Montana State University. The main objective of this project is to measure neuronal activity
in the cerebral cortex, and develop techniques to study the relationships between that activity
and visually guided behavior. In order to study these perceptual and cognitive processes, a new
type of electromechanical system was developed to implant 57 electrodes {channels) into an area
of lecm in diameter in the surface of the macaque’s cerebral cortex. The recording chamber
was hermetically sealed to reduce the chances of infection and help re-establish the normal
balance of intracranial pressure (Gray et al. 2007). It also allows one to monitor the activities
of multiple neurons in this region of the brain simultaneously. A printed circuit board grid
(PCB grid), shown in Figure 1, provides connectivity between the electrodes and the control
electronics, and also shows relative positioning of the electrodes in the surface of macaque’s
cerebral cortex. Some of the locations on the grid, that are represented by empty circles, were
removed from the study because there were some technical problems during the mounting of
the electrodes or electrodes never penetrated the cortex at those locations. The recordings were
taken from a single macaque monkey, watching the original Planet of the Apes movie. The
signals were sampled with a frequency of 1000 observations per second, then amplified (10K),
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bandpass-filtered (0.6 kHz-6kHz), digitized (30 Khz/channel), and filtered using a lowpass filter
of 1 Hz-100 Hz. Lowpass filtering allowed one to observe an ongoing low frequency background
brain activity, representing what is called the local field potential (LFP). Each rhythm or band
of frequencies in the local field potential can be associated with a particular behavior or mental
state. For instance, Beta rhythm (12-30Hz) can be related to sensor-motor processing (Ba 2001;
Senkowski 2005), and Delta rhythms (0-4Hz) are known to appear during sleep cycles (Steriade
2000). The analysis of similarities in the patterns of these rhythms is essential for understanding
the underlying neurophysiological processes.

A common modeling strategy for neurophysiological data. is to perform a Fourier transforma-
tion of the data and use Spectral power analysis for interpretation. Spatio-temporal modeling
(Bowman et al., 2005) of localized brain activity may also be performed, which allows the
production of spatially smoothed maps of distributed brain activity. A draw back of spatial
modeling is that it assumes some structure of the connectivity inside the brain. For instance,
it might assume that electrical measurements recorded from nearby locations should have a
stronger relationship than locations spread further apart. Spatial models try to adjust for these
types of relationships or spatial correlations. In the present paper, I consider an approach o
explore/model the distribution of localized brain activity without any assumption of the un-
derlying structure of connections, solely based on data-driven cluster analysis. I also address
a question of a reasonable choice of time window over which one can expect to see a relative
homogeneity in neuronal signals.

Figure 1: PCB grid
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2 Methods

2.1 Functional Data Analysis

Functional data may be defined as data for which measurements were taken on a very fine grid
of discretization, or as sparse data of a clearly functional nature. Figure 2 displays first 256
recordings from electrode channel 1 and appears clearly as a discretized curve. Because of the
fineness of the temporal grid, one can consider recordings from each single electrode channel
as a continuous curve. The first step in estimating this curve may involve some numerical
approximation techniques or smoothing methods.
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Figure 2: Neural Signals from Electrode Channel 1

8 :
g & 5: e:

2% /: R
s o1 f i o ®
NI Y

P f Ba e - ;‘%:;ﬂ
WY Y T

% ¥
: » w  ow ow

¥

Let y;; denote an ith neuronal signal, 7 = 1, ..., 5000, received from the jth electrode channel,
j=1,..,57. We have a 5000 by 57 matrix of discrete observations in our data set which we
can treat as o “noise” realization of 57 continuous smooth curves. As a first step we want to
convert these discrete values to continuous functions of time, z;, with values 2;(¢;). We also
want functions z; to be smooth, meaning that they need to possess one or more derivatives.
Notationally we can express this idea as

vy = z{ts) + ey,

where the noise term g;; contributes a roughness to the raw data. Potentially, there are two
sources of noise: discrete pointwise noise that is basically measurement error, and random
variability in the curves, where each curve is a single realization from an underlying population
with a true curve. Due to the lowpass filtering, we can exclude discrete pointwise noise, ei;, from
the model. Several methods exist to estimate the function ;(#;): kernel methods, Fourier series,
spline-based mecthods, etc. I chose to work with B-spline cubic polynomial basis functions to
estimate each function because this type of basis possesses good mathematical properties, such
as continuous differentiability and integrability, relative to the types of observations encountered
in this project.

2.1.1 Smoothing Splines

Functional data objects are usually constructed by specifying a set of mathematically inde-
pendent basis functions, ¢, and a set of coefficients, ¢, and then defining a weighted linear
combination of these basis functions:

z(t) = > andu(t).
k=1

Periodic functions are usually approximated by a linear combination of sines and cosines through
Fourier transformation. The most common choice of approximation system for non-periodic
functional data is spline functions. They are constructed by smoothly joining together polyno-
mials of specific order m at values 75, & = 1, ..., n, called knots. In practice it is very convenient
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to use B-splines, the code for working with them is readily available in R in the fda package
(Ramsay et al., 2008). Each basis function ¢ (¢} in the B-spline basis is a spline function itself.
The order of these basis spline functions in R by default is 4 which produces a continuous cubic
polynomial that has continuous first and second derivatives on the interval [ry,7k41}. These
cubic polynomials are produced under the constraint that the functions must agree at the knots
and the first and second derivatives must also agree. An illustration of B-spline basis functions
defined on 10 koots is provided in Figure 3. The dotted vertical lines indicate the knot values.
Four non-zero functions in between the vertical lines indicate an order 4 basis, and a linear
combination of the three non-zere functions at each single dotted line produces a smooth cubic
polynomial. The functions are not symmetric at the marging of the plot based on encountering
the edges of the domain. To insure sufficient flexibility of the actual fit, I put a knot at each
single time point ¢; and define a B-spline basis over 256 observations, illustrated in Figure 4.

Figure 3: B-spline basis functions defined on 10 knots
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Once a B-spline basis is created, one can use a function, once again readily available in the
fda package, to smooth the data and estimate the B-spline coefficients subject to a roughness
penalty. The degree of smoothness is controlled by a smoothing parameter A with smaller values
meaning a more flexible fit, closer to a typical least squares estimate. I chose a value of X to be
0.01 which produced only minimal smoothing in this application and a near perfect fit to the
smooth discrete observations. This choice is based on the knowledge of prior lowpass filtering
and a visual evaluation of the fit, with the example shown in Figure 5.

2.1.2 Measure of Proximity Between Two Curves

Let x = {z1, ..., x57) be a set of curves pertaining to the 57 implemented electrodes. The goal is
to partition x into subsets of curves with homogeneous neuronal signals, emanating from cortical
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Figure 4: B-spline basis functions defined on 256 knots
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tissue over a certain time window. To perform the partitioning one must defire a measure of
proximity between two curves, which appears to be a non-trivial task.

In classical multivariate clustering algorithms, the object to be partitioned arrives in the form
of finite-dimensional vector and a classical norm can be used to define the distance between two
vectors. Because in a finite dimensional Euclidian space, say RP, there is an equivalence between
all norms, the choice of the measure of proximity, in a mathematical sense, is not crucial. For
instance, if we let x,y be two vectors in RP; then, the classical Euclidean norm is defined
Tx—y|*= AR CT ¥i)% = (x —yY(x — ¥), and a whole family of norms can be deduced
based on the Euclidian norm by using different positive definite matrices, M, in the following
way || x —y 4= (x — ¥YM(x — y). In particular, by = specific choice of M one can define the
Mahalanobis distance.

Now, since we have a set of continuous curves, with an infinite number of observations
per curve, we are considering an infinite dimensional space. In infinite dimensional space, the
equivalence between norms fails and the choice of the preliminary norm becomes crucial. I
tackled the problem by defining a measure of distance over a window of time a to b by

Df- :f x; — ;)2 dE.
I [a,b]( )

‘This distance measure satisfies the properties of the distance metric:
positive definiteness: d(z,y) > 0, and d(z,y) =0<= z =1y
symmetry: d(z,y) = d(y, z)
triangle inequality: d{x,2) < d{z,y) + d(y,2) ,
and is equivalent to the Euclidean norm. While not used here, functional data analysis opens



Figure 5: Estimated Smooth Curve
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up the possibility of a derivative based semi-metric

D = / (@ — 25)%dt,
a!

which does not necessarily satisfy the positive definiteness property. In particular, it is possible
for the distance between two objects to be zero, d(z,y) = 0, with two objects not being equal to
one another, z # y. As an example, consider two paralle] lines. The values of their respective
derivatives are identical, however the two lines are not the same. The computation of a semi-
metric based on derivatives is more sensitive numerically. In particular, edge effects become a
bigger issue than in the original functional estimates.

2.1.3 Curve Clustering

In the previous sections it has been shown that neuronal signals received from the electrode
channels can be treated as realizations of continuous smooth curves. In this section, I describe
a method of data-driven cluster analysis that attempts to define groups with a high degree of
within-cluster homogeneity in brain functions.

Several clustering algerithms exist, including single linkage, complete linkage, etc. In the
present paper, I consider the Ward’s minimum variance clustering algorithm (Ward 1963) which
is an agglomerative algorithm. In general, agglomerative algorithms start with each object in a
separate class, and then amalgamate the“most similar” classes until all of the objects belong to
a single group. Ward’s method, in particular, uses sums of squared deviations from centroids of
clusters to calculate the similarity measure between different groups. It starts the partitioning
by assigning each single object to its own cluster. At this point, the sum of squared distances
between the objects and the centroids of the clusters is 0. As clusters form, the centroids move
away from the actual objects and the sum of the squared distances from the centroids increase.
Each subsequential amalgamation is done in such a way so that the sum of squared deviations
increases as little as possible. Figure 6 contains a dendrogram produced by Ward’s clustering
algorithm of the 57 estimated smooth curves over the first 256 milliseconds of reccrdings.



Figure 6: Ward’s Method Dendrogram
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2.1.4 Stopping Rules

The next dilemmsa one usually encounters in cluster analysis is the selection of the number
of clusters or partitions to use in the final solution. Unfortunately, virtually all clustering
procedures provide little, if any, information as to the number of clusters present in the data.
Sometimes the choice of the number of clusters could be driven by knowledge of the data, but
with the present data set we do not know how many and which groups might be expected. So,
to determine the preferred number of clusters, I used a more formal method referred to as a
“stopping rule”. Stopping rules evaluate a measure, G{c), of the goodness of partition into ¢
clusters, and identify the value of ¢ for which G(¢} is optimized.

I chose to use the G3{c} index (Milligan, et al 1985) that determines the optimal number
of clusters by evaluating the standardized sum, D(¢c), of all within-cluster dissimilarities in a
partition of the objects into ¢ clusters. It is defined as

G3(c) = (D(c) — min(D{e)})/(maz{D{c) — min{D{c))).

The index was found to exhibit excellent recovery characteristics by Milligan (1985), and its
minimum value across the hierarchy levels is used to indicate the optimal number of clusters.
As an example, consider the dendrogram in Figure 6. To determine the optimal number
of clusters over the first time window of 256 milliseconds I evaluated the G3(¢) index for ¢ =
2,3,...,10. I capped the possible number of groups at 10 to maintain an easier visual evaluation
of the partitioning. For the dendrogram in Figure 6, the values found were: G3(2) = 0.135,
G3(3) = 0.185, G3(4) = 0.143, G3(5) = 0.113, G3(6)} = 0.098, G3(7) = 0.088, and G3(8) = 0.12.
It is clear that the value of (3 is minimized for ¢ = 7. Figure 2.1.4 illustrates the optimal cut
of the dendrogram and shows curves grouped according to their cluster membership. One can
essentially think that all the functions in a particular group came from the same pepulation
with some mean curve and the differences between them are due to sampling variability in the
curves. Most of the curves from the same group tend to agree at the peaks but the timing of
the peaks varies from cluster to cluster. Ignoring this timing variation in computing a cross



sectional mean function can result in an estimate of average pattern that does not resemble any
of the observed curves. This might be a big issue in a functional data analysis that combines
information across curves, however it is not our intention to estimate an underlying population
mean curve. We rather want to provide a visual evaluation of the clustering method based on
the similarity of the curves that were grouped into the same cluster.
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2.1.5 Visualization Methods

The ultimate goal of my functional data analysis was to identify the distribution of patterns of
localized brain activity and visualize the results by producing cluster maps. Figure 2.1.5 presents
the plot of the 57 locations on the printed circuit board grid. Locations are grouped into clusters
and each cluster is depicted by a unique color and symbol. The data-driven cluster analysis
attempts to define groups with a high degree of within-cluster homogeneity in brain function.
However, cluster analysis generally does not quantify or test the degree of association between
intracluster locations. To estimate dependence among clusters a non-metric multidimensional
scaling (MDS) plot is produced along with the plot of the cluster maps (Venables at el., 2002).

Multidimensional scaling is a generic name for a body of procedures and algorithms that start
with an ordinary proximity matrix and generate configurations of points in one, two, three or
higher dimensional space such that distances between the points in that space best match those
of the distance matrix. This task of embedding points in a space is non-trivial. For instance,
it is clear that the two points can be placed on a line to match the dissimilarities between two
objects. Configuration of three points on a two-dimensional plane can always be defined in
such a way that interpoint distances exactly match the dissimilarities among three objects, In
general, 7 points in a metric space can always be embedded in an {(n — 1}-dimensional space so
as to exactly recreate the proximities among objects.

Now, we begin with a 57 x 57 distance matrix of dissimilarities d;; with a 256-dimensional
configuration of points (xi, X3, ..., X57), where

X;i = [z Zia.. . Liss].

It is obvious that we can not consider configurations in a 56-dimensional space. However, we
can squeeze a high-dimensional point cloud into a small number of dimensions while preserving
as well as possible the inter-point distances.

There are different forms of multidimensional scaling: classical form, Sammon’s {1969} non-
linear mapping, and a non-meiric version. In the latter one the idea is to choose a configuration
to minimize _

STRESS® = "[0(dy) — dyl?/ > _ 4,
i#f i#j
over both configuration of points and an increasing function #. Location, rotation, reflection
and scale of those configurations are all indeterminate which reflects & non-metric nature to the
method. d-ij is the measure of distance in the configuration space or Minkowski metric defined
by

m Lfr
d; = (Z |z — :sjkr) .
k=1

Sammon (1969) defined the mean-squared error between the two sets of distances, F, which is
similar to a STRESS criterion from non-metric multidimensional scaling, so the two methods
are similar, however Sammon’s function puts much more stress on reproducing small distances
accurately. We used a non-metric version of MDS to try to capture global, not local, structure
of configurations; to produce few tight groups to estimate the dissimilarities among the clusters.
The reason for this behavior is that STRESS weights large distances more heavily than small
ones.
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For an easy visualization, we considered configurations in B2, however it is hard to determine
whether or not the interpoint distance in a configuration is a reasonably accurate reflection of the
original proximities. It is quite possible that the minimal dimensionality for the configurations
should be greater than 2. Overall, 37 plots were produced over time windows of 256 milliseconds
and an overlap of 128 milliseconds. The size of the time window and overlap were chosen due
to numerical efficiency of spectral computations not discussed in this paper. Also, it seemed
unreasonable to consider a time window shorter than a quarter of a second since any significant
divinations in the patterns of electrical signals might not have been detected with too few
observations in each time window.
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Some spatial configurations on the PCB grid are similar across time windows, as shown in
the upper panel of Figure 2.1.5. Others, on the contrary, differ dramatically {lower panel of
Figure 2.1.5). 17 out of 37 times 10 groups were chosen to be an optimal number of partitions
according to the G3 index, which indicates that we probably need to increase the possible number
of clusters to get a more appropriate representation of the spatial connectivity. Most of the MDS
plots were quite difficult $o interpret. As an example see Time Windows 5 and 6, that do not
project well into a small number of dimensions. Normalized STRESS values in two dimensions
for all time windows was over 0.10. Kruskal (1964) suggests a threshold of 0.05 for the STRESS
of a “good” configuration. Normalized STRESS values of about 0.15 in three dimensions and
about 0.05 in 9 dimensions indicate that perhaps, even for a non-metric solution, more than two
dimensions are needed to provide an adequate representation of such a large number of channels.
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2.2 Analysis of Similarities Across Time Windows

It's been mentioned above that the choice of temporal window was quite arbitrary and by
and large based on the numerical efficiency of computations. Therefore, it is of interest to
estimate a reasonable choice of time window over which one can expect to observe a relative
homogeneity in the distribution of the localized brain activity. In the next section I am going
to discuss a statistical approach to quantify temporal changes in the overall spatial-patterns of
brain connectivity. In particular, I am going to evaluate the similarities in spatial connectivity
configurations using a proximity measure based on the Mantel statistic, a well known statistical
tool designed specifically to quantify similarities between distance matrices.

2.2.1 Mantel Statistic

The Mantel test was first developed in 1967 to correlate temporal and spatial distributions of
cancer incidents. It provides a measure of association between distance matrices or more gen-
erally proximity matrices based on the degree of the relationship between two sets of variables
taken at the same sampling locations. The Mantel approach consists of calculating the correla-
tion between the values of two upper (or lower) triangle parts of the square symmetric distance
matrices Ay and B;;. The statistic used to measure correlation between two matrices is the
classical Pearson correlation coefficient:

v [ ]

=1 =1 5B

where N is the number of elements in the lower or upper triangular part of the matrix, A is
the mean for the A elements and s4 is the standard deviation of A elements. Note that the
coefficient + measures only linear correlation, therefore if non-linear relationships exists, they
may be missed. However, it is possible to allow for non-linear relationships by finding the
Spearman correlation instead of Pearson.

2.2.2 Measure of Proximity Between Time Windows

I have a set of 37 distance matrices of size 57 %< 57 computed over 4608 milliseconds of recordings.
The rows and columns of all matrices correspond to the same channels. The first step is to find
the Mantel statistic by computing the Pearson correlation coefficient between the corresponding
elements of the upper triangular matrices. Next, the correlation is converted into a distance
(Hastie et al. (2009)) by defining a proximity measure between distance matrices of

Dij =/ 2(1 — Mantel).

Now, all of the pairwise comparisons of proximity matrices corresponding to 37 different time
windows are organized into a new 37 x 37 distance matrix. The Ward’s minimum variance
method and the (3 index stopping rule are applied to the new distance matrix to cluster time
windows over which one can observe relatively stable spatial connections. The value of G3 is
minimized for ¢ = 3. Figure 7 illustrates the optimal cut: of the dendrogram. A multidimensional
scaling plot is also produced to visualize these results.
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Figure 7: Dendrogram of Between Window Dissimilarities
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2.2.3 Visualization of the Results

A two-dimensional configuration of time windows using a non-metric MDS method is shown in
Figure 8. The 37 time windows in Figure 8 have been labeled by color to highlight the separation
of the three clusters. These three clusters constitute three separate patterns of spatial brain
connectivity. A normalized STRESS value of 0.1736 indicates that probability more than two
dimensions are needed to provide an adequate representation of tirme window configurations.
All of the first 19 time windows were put into the same group indicated by the black color
which displays a similar pattern of the overall brain connectivity over these time windows. Then
we observe a slight deviation, over time windows 20, 21, and 22 from the overall pattern of the
spatial brain connection observed over the first 2432 milliseconds. These time windows represent
the second type of brain connectivity patiern marked by the red color. Afterwards, over time
windows 23 and 24, we return to the “black™ pattern witnessed previously. The time windows
25 and 26 were put into a 3rd group which represents yet a third pattern of the spatial brain
connectivity labeled as “green”. The remaining time windows jump from pattern to pattern
in the following fashion: 27 “black”, 28, 29 “red”, 30-33 “black”, and 35-37 “green”. This
“jumpiness” probably indicates that the monkey was not “focused” over that time period. To
further understand the temporal distribution of these data it would be helpful to know the
specific visual images the macaque monkey was viewing and the mental state she was in at the
time the recordings were made.
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Figure 8: Non-metric MDS mapping of Time Windows
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3 Limitations of Methods

The time domain or functional data analysis approach used does not accommodate time/phase
delay or negative correlations between a pair of channels, Both are thought to be acceptable
for showing connections in local field potential. For example, consider Figure 9. The red line
estimates the LFP function for the first 256 milliseconds of recordings from Channel 1. The
black line is a mirror image of the red one, and was artificially produced to illustrate the idea of
perfect negative correlation. The dynamics of change of these two curves should be considered
to be identical, however an integrated squared difference between the two is obviously non-zero.
In future projects, we would like to incorporate a possible time delay of up to 15 milliseconds, as
well as possible negative correlation, into a measure of proximity between two curves. We also
would like to analyze more “exciting” data sets with more channels and measurements that were
taken under certain experimental conditions. Finally, we would like to explore the semi-metric
based on derivatives to estimate a measure of proximity between two curves.

4 Discussion

In this study we considered an approach to explore/model spatio-temporal changes in localized
brain activity. Functional data analysis was found to be a reasonably useful approach to estimate
electrical signals recorded from cortical tissue. We defined a measure of proximity between two
curves and performed cluster analysis to estimate a spatial distribution of localized brain activity.
Next, assuming there exists a certain dependency across time windows, we performed cluster
analysis on the next level of hierarchy by defining a distance measure between functional maps
based on the Mantel statistic. We summarized the results by producing plots of distributed
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Figure 9: Illustration of two neuronal signals that should be considered identical to one another

brain activity by groups on original space and in a multidimensional scaling plot. The proposed
analysis may serve as a first step to understanding spatial-temporal connectivity of the brain.
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