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ABSTRACT

Ordinal scale responses have always been popular in the biomedical, educational, and social
science fields of study, but more recently the use of statistical methods tailored to the char-
acteristics of ordinal responses have begun to gain in popularity. While many models have
been proposed which allow the use of the ordering without treating the data as quantitative,
little has been written about the assessment of the assumptions which accompany these
ordinal response models. Further complicating these models and their assumption assess-
ment are when random effects must be included to account for correlations within clusters
of observations. This paper focuses on the treatment of ordinal responses, specifically fo-
cusing on ordinal response mixed models and the assumptions underlying these models. A
murine model breast cancer research study was used as a case study to examine these ordinal
response mixed models and methods for assessing model assumptions.

1 Ordinal Variables

An ordinal variable is a categorical variable whose levels have a natural ordering. In teacher
evaluations, for example, students are asked to rate their instructor on a scale from poor
to acceptable to excellent. A rating of poor is of course worse than a rating of acceptable,
which in turn is less desirable than a rating of excellent. These Likert scales are traditionally
used in social science and education research but have more recently been used in medical
research as well. For example, when patients rate their symptoms or pain level, an ordinal
scale is often used. In the case study discussed later, the metastis of cancer of certain organs
of mice was rated on a scale of 0 to 4, with 0 meaning no metastis and a 4 meaning significant
metastis in the organ.

The fact that the levels of an ordinal variable are ordered means these variables can,
and for a statistical analysis must be coded as numeric. However this representation can
be misleading. It should be noted that a numeric coding of an ordinal variable is simply
a renaming of the group levels. In the case study example above, a 0 is simply the label
associated with the group of having no metastis in the organ. It is important for two reasons
to think of these codings as labels rather than values. First, even though the variable can
be coded as numeric, it certainly is not continuous. There is no mouse in the case study
with a metastis score of 0.5, because the only possible scores are 0, 1, 2, 3, and 4. Second,
there may not be equal differences between group levels. For example, if the scale of teacher
evaluations was coded numerically, poor might be a 0, acceptable a 1, and excellent coded
as 2. However, the amount of effort an instructor would have to put into teaching to change
a student’s evaluation from a 0 to a 1 is likely to be a lot less than the amount of increased
effort required to change the evaluation from a 1 to a 2, despite each change only being a
one unit difference numerically. The distance between a 0 and 1 in this case is not equivalent
to the distance between a 1 and 2.
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2 Ordinal Response Models

There have been several methods used to analyze data in which the response variable is
ordinal. If the numerically coded variable is treated as quantitative, typical least squares
regression can be a simple method of analysis. However, this often used method commonly
violates the assumptions of homoscedasticity as well as normality of the residuals. The
predictions from such models are also difficult to interpret as the values will rarely be whole
numbers and, the meaning of a predicted metastis score of 0.7 if the only values the variable
can take on are 0, 1, 2, 3, or 4 is questionable. Additionally, this treatment of the ordinal
response assumes the steps between levels of the variable are equal which is not always the
case as demonstrated above. A second option for modeling ordinal responses would be to
ignore the ordering of the variable, meaning treat the response as nominal. Multinomial
logistic regression is often the choice in this instance. Again, there are problems with this
analysis, most prominently the loss of information from ignoring the ordering resulting in a
loss of power for the model.

Cumulative link models (CLM) are designed to handle the ordered but non-continuous
nature of ordinal response data. In these models, for each level j of the ordinal response,
the cumulative probability of being in level j or lower is modeled. CLM models take the
following general form:

G−1[P (Y ≤ j)] = αj −Xβ.

In this notation, X represents the model matrix, β the vector of true coefficients for each
regressor as well as the intercept, αj the threshold for level j, j = 1, . . . J for an ordinal
variable with J levels, and G−1 the link function. One simple way to interpret αj and G−1

is by thinking of the ordinal response variable, Y , as having come from a latent, continuous
variable, Y ? (Agresti, 2010, 2007, 2002). This CLM is then equivalent to an ordinary least
squares regression of Y ? on the predictors, or

Y ? = Xβ + ε, ε ∼ N(0, σ2).

In this way of thinking, αj represent cut-off points that separate the levels of the ordinal
response, or

Y = j if αj−1 < Y ? ≤ αj.

The link function in this situation is in fact the inverse cumulative density function of Y ?.
This is seen easily by applying the cumulative density function of Y ? to both sides of the
CLM.

This idea is represented in Figure 1, with Y ? and Y on the y-axis and a single regressor,
X on the x-axis. The straight line represents the simple linear regression of Y ? on X with
the two distributions overlaid representing the distribution of the latent variable at each X
value (x1 and x2).
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FIGURE 1: Showing the relationship between the latent,
continuous variable Y ? and the ordinal variable Y . From
Agresti (2010) page 54.

Figure 1 shows that shifts in X are essentially resulting in a shift in the center of the
distribution of Y ?. The cut-points remain the same no matter the value of X and therefore
the probability of being in each category of Y changes depending on the predictor’s value.
Note the value of Y is solely determined by the αj which partitions the latent continuous
variable Y ?.

The parameterization of subtracting Xβ in the CLM above is the default parameteriza-
tion in all identified programs in R (The R Core Development Team, 2011). Figure 1 above
displays the logical reasoning behind this choice of parameterization. From the figure, the
simple linear regression of Y ? on X has a positive slope indicating that in this case, β is
greater than zero. In the CLM, this would mean that as X increases, αj −Xβ will decrease,
decreasing the probability of being in a lower category or, conversely, increasing the proba-
bility of being in a higher category. As can be seen in Figure 1, as X increases from x1 to
x2, the shaded area representing the probability of Y being in category 4 also increases. The
opposite is true for a negative value of β: as X increases, the probability of being in a lower
category is increased.

The focus of this research was to investigate cumulative link models using R. Several
packages have functions built in which model ordinal responses. For example, in the MASS

package (Venables and Ripley, 2002), the polr() (proportion odds logistic regression) func-
tion takes arguments similar to a logistic model (glm() function), including allowing the
user to set the link function. The logit, or log odds, link, which is the default, is the inverse
cumulative density function of a Logistic probability distribution. When using the logit link
function, CLM models are more commonly referred to as proportional odds models. An-
other commonly used link function is the probit link which is the inverse cumulative density
function of a standard Normal distribution. The ordinal2 package written by Christensen
(2011) includes the clm() (cumulative link models), clmm() (cumulative link mixed models),
and clmm2() functions, the first of which is similar to polr() while the second two allow for
the addition of random effects into the CLM.
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2.1 CLM Assumptions

As with all models, there are assumptions which must be satisfied in order for the results
of the analysis to be valid. Independence of observations and proportional odds are the two
main assumptions which pertain to CLM models. The independence assumption will be
discussed further in the Section 3. The assessment of the proportional odds assumption is
an important but often overlooked step in the process of model building. This assumption
states that β is independent of the level j, or that the effect of X is the same for all levels j
of the ordinal response. Another way of thinking about this assumption is that the difference
in probit or logit of the cumulative probability for Y ≤ j is constant for all values of X.
Notationally,

G−1[P (Y ≤ j|X)]−G−1[P (Y ≤ i|X)] = αj − αi.

Harrell (2001) and Ananth and Kleinbaum (1997) note the existence of a χ2 score test of the
proportional odds assumptions. However, information regarding the calculation of such a test
statistic was not discussed and was unable to be found during further investigations. Harrell
does however discuss in more depth a qualitative assessment of proportional odds. The fol-
lowing plot is an example of such an assessment, created using Harrell’s summary.formula()
function from his Hmisc package (2010) for R.

FIGURE 2: A plot assessing the proportion odds assump-
tion for a series of both qualitative and categorical predic-
tors. The circle, triangle, and plus sign correspond to the
empirical logit of Y ≥ 1, 2, 3, respectively from Harrell (p.
336, 2001).

In Figure 2, each symbol is the empirical logit or probit of the response variable calculated
by finding the Logistic or Normal quantiles associated with the proportion of responses in
the data set being less than (or greater than in the plot above) a certain category, with
one symbol associated with each level of the response. The proportional odds assumption
is checked by examining the vertical consistency of distances between any two of the three
symbols within a variable. Note that to check this assumption for quantitative predictors,
Harrell suggests binning the regressor and then plotting the probit or logit for each of the j−1
levels of the response for each bin. The distance between symbols represents the difference in
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logit or probit values between two different values of j. If the proportional odds assumption
is violated, this distance will depend on the value of X, whereas consistency across all values
of the predictor indicate that the assumption is valid. However, is it difficult to tell, and
Harrell does not address, how much inconsistency in distances would lead to the belief the
proportional odds assumption is violated. Further research on the χ2 score test mentioned
previously would be beneficial.

It should be noted that the cumulative link model described here is in no way the only
way to model ordinal responses. Agresti (2010) describes cumulative logit models which
do not require the proportional odds assumption as well as adjacent categories logit models,
continuation-ratio logit models, and cumulative log-log link models. These more complicated
models present additional struggles in adding random effects to the model, which is already
a difficult computational challenge. As mentioned previously, multinomial models could be
used, but these ignore the information available in the ordinal nature of the categorical
response.

3 Random Effects

The assumption of independence of observations applies to all regression models. When
multiple measurements are taken on the same individual or across time, this assumption is
violated. In order to account for dependent observations a random effect can be added to
the previous model. Cumulative link mixed models have the following general form:

G−1[P (Yi ≤ j)] = αj − (Zt[i]ut +Xiβ)

where ut ∼ N(0, σ2
u).

In this notation, ut represents the vector of coefficients corresponding to the group-level
predictors Zt[i] for observation i in cluster t. This model has the added assumption that the
random effects are Normally distributed and centered at zero. The random effect induces
the correlation expected between observations in the same cluster and allows inferences to
be made to the population from which the groups were sampled. It should be noted that
model estimates can be unstable if there are a small number of observations within clusters
or if there are few clusters from which to estimate within group correlation.

Adding random effects to an ordinal response model will further complicate an already
complex likelihood for the observations. As coefficient estimates and standard errors are
calculated using maximum likelihood methods, the result is often difficulty in model conver-
gence. Assuming an underlying Logistic distribution can make convergence issues even more
likely. A logit-link model with random effects will create a mixed likelihood that combines
the Normal distribution of the random effect with the Logistic distribution assumed for the
latent responses. Using a probit-link, which assumes a Normal latent distribution for the
data, can help with model convergence. Currently, the clmm() function in the ordinal2

package (Christensen, 2011) uses Laplace approximations to fit the model. However, it is
soon expected to be able to estimate model parameters using either standard or adaptive
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Gauss-Hermite quadrature approximation, an option currently available in the clmm2() func-
tion. However, the clmm2() function is limited to only accepting a single random effect. See
Agresti (2010) or Hedeker and Gibbons (1994) for more information on estimation of ordinal
response mixed models.

When a random effect is included in a model, it is important to look at the intra-class
correlation (ICC). ICC is defined as the correlation of observations within a group and is
a way to look at how similar these within-cluster observations are to one another. The
following formula is used to calculate ICC:

ICC =
σ2
u

σ2
u + σ2

.

Here, σ2 represents the residual variance and in the case of CLM models, is assumed to be
one while σ2

u represents the variance of the random effect. Values of ICC near one indicate
that observations within a cluster are very similar to one another, while values close to zero
indicate that the random effect may not be necessary as observations within a group are
nearly independent. For the probit cumulative link mixed model, the residual variance is
the variance of the latent response and therefore is one by definition of the standard Normal
distribution.

4 Case Study

A dataset investigating the effect of bio-energy treatments on breast cancer in a murine
model is used to illustrate these methods. In this experiment, male mice were injected
with breast cancer and treated for 15 days. Five different treatments were investigated:
healing touch administered three days per week (IIH), healing touch administered daily (IH),
reiki administered three times per week (IIR), reiki administered daily (IR) and a control
group. Reiki and healing touch are both bio-energy treatments in which the healer uses hand
placements and thoughts to aid the flow of energy throughout the patients body. The hope is
that this flow of energy will help the body heal itself. Reiki is an ancient Japanese treatment
with the theory passed down in a master-apprentice relationship. The goal of this treatment
is to help the natural flow of energy through the body. Healing touch on the other hand
is more modern with techniques being taught in schools around the globe. This treatment
focuses on directing the movement of energy through the patient’s body (Potter, 2003). Both
of these treatments have vast amounts of anecdotal evidence with human patients. However,
the physical improvements of patients is often attributed to the placebo effect by critics of
bio-energy treatments. The application of these treatments to mice removes the possibility
of the placebo effect as an explanation. Seven research mice were placed in a cage, with at
least two cages per treatment. During an application of the bio-energy treatments, all cages
getting the same treatment were placed on a table and treated simultaneously. After the
15 day treatment period, the mice were euthanized and dissected. Samples which included
tumor and various organs were sent to a pathologist to grade the rate of metastis. Metastis
was scored on a ordinal scale from 0 to 4, with a 0 indicating no metastis, or healthy organ
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cells, and a 4 indicating significant metastis, or extremely cancer filled organ cells. Note that
this was not a balanced design with the control group occupying six cages, reiki treatments
being applied to four cages each and healing touch treatments only getting two cages each.
Due to the way the cancer spreads, the lungs, liver, and spleen were the organs of most
interest in this study.

4.1 Data and Model

Occasionally when organ or tumor samples were taken from the mice, multiple organs or
those not targeted were sampled as well. Therefore, there were some mice with multiple
metastis scores on a single organ. In this case, the maximum metastis score was taken as
this was felt to be a better indication of whether the cancer had spread than the minimum
metastis score. Now with one measurement per mouse per organ, a separate analysis was
conducted for each organ studied: the liver, lungs, and spleen. Two different analyses were
conducted on each organ. Although the mice are genetically identical and cages treated as
similarly as possible, the social nature of mice leads to the belief that mice within a cage will
be more similar to one another than to mice in another cage receiving the same treatment.
This correlation amongst mice within a cage is accounted for through the use of a random
intercept for each cage in the first analysis which has the following form:

Φ−1[P (Yi ≤ j)] = αj − (1uc[i] +Xiβ) where uc ∼ N(0, σ2
c ).

Here, Φ−1 represents the inverse cumulative density function of a standard Normal distri-
bution, or more simply the probit link, uc[i] is a vector of random intercept coefficients for
the cage c where mouse i was housed, Xi is a the model matrix which includes an intercept
which represents the baseline treatment (control) and indicator variables which represent
deviations from the baseline for each treatment other than the control, and β represents the
coefficient vector for the control group and deviations from the control group for each other
treatment. Since, at most, only 7 measurements were available for each cage, there was con-
cern the model estimates from this analysis would be unstable. Of further concern was the
fact that the effect of cage may be hiding a treatment effect as treatments were applied to
cages as a whole and so these two variables are somewhat confounded. The second analysis
assumed there was no effect of cage, or that each mice was independent. This model had
the following form:

Φ−1[P (Yi ≤ j)] = αj −Xiβ

with Φ, X, and β having the same meaning as the previous model. It should be noted that
because treatments were applied to all cages receiving the same treatment at the same time,
the experimental units are actually at the treatment level rather than the cage level.
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FIGURE 3: A mosaic plot showing the observed
proportions of mice with liver measurements in each
metastis score level for each treatment. The treat-
ments along the x-axis are, in order, the control
group (C+), daily healing touch (IH), three days per
week healing touch (IIH), three days per week reiki
(IIR) and daily reiki (IR).
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FIGURE 4: A mosaic plot showing the observed pro-
portions of mice with lung measurements metastis
score level for each treatment.
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FIGURE 5: A mosaic plot showing the observed pro-
portions of mice with spleen measurements in each
metastis score level for each treatment.

Figures 3, 4, and 5 display the responses for each treatment within each organ: the liver,
lung, and spleen, respectively. From these plots, across all organs the healing touch groups
showed more mice with lower metastis scores that the control, indicating a healthier mouse,
although the difference seems most apparent in the spleen and least apparent in the lungs.
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The reiki treatment on the other hand shows approximately equivalent proportions of mice
in each metastis level in the lungs but more mice with higher liver and spleen metastis scores
when compared to the control group. This indicates that reiki may in fact be helping the
cancer spread to the latter two organs.

4.2 Results and Diagnostics

4.2.1 Liver Organ

In the liver data, the two analyses have similar results with treatment coefficients having
the same sign and being within one standard error of the each other. However the p-values
for the coefficients are significantly lower in the non-mixed model. The coefficient estimates
for the healing touch group are both negative, indicating that in comparison to the control
group, both healing touch groups appeared to have higher probabilities of remaining in lower
metastis scores, indicating a healthier mouse. The opposite was true for the reiki groups,
with positive coefficients indicating higher probabilities of being in higher metastis scores,
or sicker mice. Tables 1 and 2 give the model coefficients, standard errors, Z-test statistics
for whether the coefficients are zero or not and p-values for this test for the mixed model
and the model with no random effects, respectively.

Estimate Std. Error z value Pr(>|z|)
0|1 0.12 0.37 0.32 0.75
1|2 0.37 0.37 1.00 0.32
2|3 0.62 0.37 1.64 0.10
3|4 1.06 0.39 2.74 0.01

GroupIH -0.64 0.74 -0.87 0.38
GroupIIH -0.88 0.76 -1.16 0.25
GroupIIR 0.71 0.66 1.08 0.28
GroupIR 0.52 0.61 0.86 0.39

TABLE 1: Model estimates for the liver data for the model which
includes cage as a random effect.

Estimate Std. Error z value Pr(>|z|)
0|1 0.37 0.33 1.14 0.25
1|2 0.73 0.33 2.19 0.03
2|3 1.06 0.34 3.08 0.00
3|4 1.65 0.38 4.38 0.00

GroupIH -0.88 0.72 -1.22 0.22
GroupIIH -1.34 0.83 -1.60 0.11
GroupIIR 1.05 0.57 1.85 0.06
GroupIR 0.56 0.56 0.99 0.32

TABLE 2: Model estimates for the liver data for the model which
includes no random effects.

In the cumulative link mixed model, a likelihood ratio test comparing a model with no
treatment effect to the model described above gave a χ2 test statistic of 4.8493 on 4 degrees
of freedom resulting in a p-value of 0.3031. This relative high value indicates there is not
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a significant difference between the two models, or that there is no evidence of a treatment
effect. For the liver, it indicates that treatment was not a significant predictor of metastis
score. The variance of the cage random effect was estimated to be 0.538, giving an intraclass
correlation between metastis scores for mice in the same cage of 0.35. However, in the second
method of analysis which does not take into account the possible cage effect, the χ2 test of
a treatment effect has a test statistic of 12.300 on 4 degrees of freedom for a p-value of
0.0153. This indicates that treatment is a significant predictor of metastis score in the liver,
directly contradicting the first method of analysis. A pairwise comparison of all treatments
was conducted after this finding of significant differences between treatments. Bonferroni-
corrected p-values for all pairwise treatment comparisons were found. With five treatments,
this is 10 comparisons, so the p-values for each comparison were multiplied by 10 to get the
Bonferroni-corrected p-value, a very conservative way to test equivalence of treatments. The
following pairwise comparisons had the lowest Bonferroni-corrected p-values: daily healing
touch and three-times-per-week reiki (0.16) as well as three-times-per-week healing touch
and three-times-per-week reiki (0.08).

Figures 5 and 6 show the fitted probabilities of being in each metastis level for each
treatment for the mixed model holding the random effect at zero (left) and the non-mixed
model (right).
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FIGURE 6: Fitted probabilities for each treatment
in the liver from the cumulative link mixed model.
Note in this plot the random effects for cage are set
to be zero for every cage.
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FIGURE 7: Fitted probabilities for each treatment
in the liver from the second analysis.

Figure 6, which sets all random effects to be zero, and Figure 7 are similar to each other
and to Figure 3 indicating the model appears to be generating fitted probabilities which
are similar to those observed in the data. It seems that the model with no random effects
predicts more low scores in the healing touch groups and more high scores in the control and
both reiki groups than the mixed model does, which accounts for the significant differences
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between treatments found on the second analysis. The plots below are assessing model
assumptions using Harrell’s plot to assess proportional odds (Fig. 8) and a Normal QQ plot
to assess normality and magnitude of the random cage effects (Fig. 9). The distance between
any two sets of points does not appear to be consistent in Figure 8, indicating there may be a
violation of the proportional odds assumption. It is important to note that Harrell’s (2001)
plot does not allow for the inclusion of random effects which could make the difference in
making probits appear more consistent across the levels of treatment. Figure 9 does indicate
the assumption of normality of the random effect is valid. The variability of the random
effect between -1 and 1.2 on the latent standard normal scale demonstrates the importance
of the random effect in this model.
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be included in the model.
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FIGURE 9: Normal QQ Plot of the random effects for
cage in the model which includes treatment. The ordered
random effects appear to coincide with the Normal quan-
tiles giving no reason to feel the Normality assumption
of the random effect is violated.

4.2.2 Lung Organ

In the lung data, the two analyses again give similar estimated coefficients with all being
within one standard error in the two analyses. Like the liver data, the coefficient estimates
for the healing touch group are both negative, indicating that in comparison to the control
group, both healing touch groups appeared to have higher probabilities of remaining in lower
metastis scores, or a healthier mouse. The same was true for both reiki groups, with negative
coefficients indicating higher probabilities of being in lower categories. Tables 3 and 4 on
the following page give the model coefficients, standard errors, Z-test statistics for whether
the coefficients are zero or not and p-values for this test for the mixed model and the model
with no random effects, respectively. Note that in the mixed model, standard errors for
the first three thresholds were infinite. This may be the result of a two factors. First, the
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estimated variance of the random effect is very close to zero with may have caused a problem
with the estimability of the variance-covariance matrix. Second, looking at Figure 4, very
few observations in any of the treatment groups had high level metastis scores, with the
control, daily healing touch, three days per week healing touch and daily reiki devoid of any
observations for at least one level of the response. This too may have caused an problem
with estimability of the thresholds.

Estimate Std. Error z value Pr(>|z|)
0|1 0.75
1|2 1.44
2|3 2.07
3|4 2.34 0.26 9.03 0.00

GroupIH -0.08 0.39 -0.21 0.83
GroupIIH -0.35 0.42 -0.83 0.40
GroupIIR -0.03 0.28 -0.10 0.92
GroupIR -0.06 0.26 -0.24 0.81

TABLE 3: Model estimates for the lung data for the model which
includes cage as a random effect.

Estimate Std. Error z value Pr(>|z|)
0|1 1.18 0.36 3.28 0.00
1|2 2.49 0.46 5.44 0.00
2|3 3.93 0.76 5.14 0.00
3|4 4.63 1.04 4.45 0.00

GroupIH -0.46 0.85 -0.55 0.58
GroupIIH -0.58 0.84 -0.69 0.49
GroupIIR -0.13 0.62 -0.21 0.83
GroupIR -0.12 0.58 -0.21 0.83

TABLE 4: Model estimates for the lung data for the model which
includes no random effects.

A likelihood ratio test comparing mixed model with no treatment effect to the mixed model
which includes treatment as a predictor gave a χ2 test statistic of 0.5941 on 4 degrees of
freedom resulting in a p-value of 0.9637. This indicates there is no significant difference
between the two models, or treatment was not a significant predictor of metastis score in the
lung. For the lungs, the variance of the random effect was found to be 7.4 ×10−8 which made
the ICC between metastis scores for mice in the same cage nearly zero. This indicates there
may be no need for a random effect for cage when analyzing the lung data. In the second
analysis which does not include a cage random effect, the comparison of the no treatment
effect model to the model with treatment calculated the χ2 test statistic to be 0.6042 on
4 degrees of freedom for a p-value of 0.9626, a very similar result to that found when the
random effect for cage was included in the model. Figures 10, 11, and 12 on the following
page show the fitted probabilities of being in each metastis level for each treatment for the
model which includes the random effect for cage with the random effect set to zero (Fig. 10)
and the model with no random effects (Fig. 11) as well as the proportional odds assessment
using Harrell’s figure (Fig. 12). Figure 10, which does set all random effects to be zero,
and Figure 11 are nearly identical and both are similar to Figure 4 indicating the model
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appears to be generating fitted probabilities which are similar to those observed in the data.
However, the distance between any two sets of points does not appear to be consistent in
Figure 12, indicating there may be a violation of the proportional odds assumption. Since
the random effect does not appear necessary in the lung organ, it is likely a proportion odds
model is not valid for these data. Plotting the random effects for cage, all appear to be
zero indicating again that there may be no need for a random effect for the responses. This
uninformative plot was not included.
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FIGURE 10: Fitted probabilities for each treatment
in the lungs for the model which includes cage as a
random effect. Note in this plot the random effects
for cage are set to be zero for every cage.
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FIGURE 11: Fitted probabilities for each treatment
in the lungs for the model with no random effects.
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FIGURE 12: Plot of assess the proportion odds as-
sumption for the lung. Note this plot does not take
into account the random effect for cage which should
be included in the model.

4.2.3 Spleen Organ

In the spleen data, the two analyses again give similar estimated coefficients with all being
within one standard error in the two analyses. Like the liver and lung data, the coefficient
estimates for the healing touch group are both negative, indicating that in comparison to the
control group, both healing touch groups appeared to have higher probabilities of remaining
in lower metastis scores, or a healthier mouse. Like the liver data, the opposite was true for
both reiki groups, with positive coefficients indicating higher probabilities of being in higher
categories. Tables 5 and 6 on the following page give the model coefficients, standard errors,
Z-test statistics for whether the coefficients are zero or not and p-values for this test for the
mixed model and the model with no random effects, respectively.

Estimate Std. Error z value Pr(>|z|)
0|1 0.55 0.59 0.93 0.35
1|2 0.61 0.59 1.02 0.31
2|3 0.80 0.60 1.34 0.18
3|4 1.36 0.62 2.20 0.03

GroupIH -1.55 1.31 -1.18 0.24
GroupIIH -1.03 1.25 -0.82 0.41
GroupIIR 1.07 1.01 1.06 0.29
GroupIR 0.38 0.97 0.40 0.69

TABLE 5: Model estimates for the spleen data for the model which
includes cage as a random effect.

Estimate Std. Error z value Pr(>|z|)
0|1 0.98 0.39 2.52 0.01
1|2 1.04 0.39 2.67 0.01
2|3 1.25 0.40 3.14 0.00
3|4 1.87 0.44 4.25 0.00

GroupIH -1.66 1.11 -1.50 0.13
GroupIIH -0.81 0.85 -0.95 0.34
GroupIIR 0.64 0.64 1.00 0.32
GroupIR 0.08 0.70 0.12 0.91

TABLE 6: Model estimates for the spleen data for the model which
includes no random effects.

For the model which included cage as a random effect, likelihood ratio test comparing the no
treatment effect model with the model described above gave a χ2 test statistic of 4.9568 on
4 degrees of freedom resulting in a p-value of 0.2918. This relative high value indicates that
treatment was not a significant predictor of metastis score in the spleen. The variance of
the random effect for cage in the mixed model was estimated to be 1.50 giving an intraclass
correlation between metastis scores for mice in the same cage of 0.68. This is the highest of
the three organ analyses. For the model with no random effects,a χ2 test for the treatment

14



effect gave a test statistic of 7.5739 on 4 degrees of freedom for a p-value of 0.1085. Treat-
ment may be a significant predictor of metastis score in the spleen in the non-mixed model.
However, only daily healing touch and three-times-per-week reiki treatment comparison gave
a Bonferroni-corrected p-value that was close to significant (0.160).

Figures 13 and 14 below show the fitted probabilities of being in each metastis level for
each treatment for the mixed model (Fig. 13) and the non-mixed model (Fig 14). Figure 13,
which does set all random effects to be zero, and Figure 14 are similar and both resemble
Figure 5 indicating the model appears to be generating fitted probabilities which are similar
to those observed in the data. Like in the analysis of the liver data, the model which does
not include random effects appears to increase the estimated probabilities of being in lower
categories in the healing touch groups while increasing the expected probability of being in
higher categories in the control and both reiki groups. These differences account for the
different ANOVA results described above.
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FIGURE 13: Fitted probabilities for each treatment
in the spleen for the mixed model. Note in this plot
the random effects for cage are set to be zero for
every cage.
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FIGURE 14: Fitted probabilities for each treatment
in the spleen for the model which does not include
cage as a random effect.

Figures 15 and 16 on the following page assess model assumptions with Harrell’s pro-
portional odds plot (Fig. 15) and a Normal QQ plot to assess the normality of the random
cage effect for the mixed model (Fig. 16). Again we see the distance between any two sets
of points does not appear to be consistent in Figure 15, indicating there may be a violation
of the proportional odds assumption. It is important to note that Harrell’s (2001) plot does
not allow for the inclusion of random effects which could make the difference in probits ap-
pear more consistent across the levels of treatment, especially considering the high intraclass
correlation seen in the spleen data. Figure 16 shows some deviation from Normality in the
upper tail for the random effect of cage.
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PO Assessment: Spleen Probit Model
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FIGURE 15: Plot of assess the proportion odds as-
sumption for the spleen. Note this plot does not take
into account the random effect for cage which should
be included in the model.
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FIGURE 16: Normal QQ Plot of the random effects for
cage in the model which includes treatment. The ordered
random effects appear to coincide with the Normal quan-
tiles giving no reason to feel the Normality assumption
of the random effect is violated.

The fact that for two of the three organs, the results of the two analyses are not similar
is concerning. Further investigation of the dataset will be necessary to determine which
analysis is more appropriate.

4.3 Alternative Analyses

A logit-link could be substituted for the probit-link used in the ordinal mixed model analysis
described above. The logit analysis of the lung and spleen data is nearly identical to the
results of the probit model. A likelihood ratio test comparing an intercept only model to
a model which includes treatment as a predictor gave a χ2 value for the lungs of 0.6675
(compared to 0.5941 using the probit link) and for the spleen of 4.8782 (compared to 4.9568
using the probit link). The results of the likelihood ratio test for the lungs is slightly differ-
ent between the two link functions (χ2 test statistic of 4.8493 for the probit-link, p-value of
0.3031, χ2 test statistic of 5.5253 for the logit-link, p-value of 0.2375), but both models indi-
cated that treatment is not a significant predictor of metastis score. Additionally, although
the coefficient estimates and standard errors differ between the logit and probit models, the
p-values of the coefficients are very similar for all three organs.

Another mixed modeling approach that could be used would be to fit nested random
effects, one for cage and one for mouse within cage. This approach would require the indi-
vidual datasets from each organ to be combined into a single dataset. The cumulative link
mixed model fit would then include treatment, organ, and the interaction between these two
variables as well as two nested random effects, for cage as well as for mouse within cage.
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5 Conclusions

Many possible methods of analysis exist for ordinal response data. If the levels of the ordinal
response possibly may not be equally spaced, then ordinary least squares regression is likely
not an appropriate analysis. Figures 14 and 15 are diagnostic plots of the case study data for
the spleen from a linear mixed model. This plot demonstrates the common problem when
ordinal responses are treated as quantitative. The Normal QQ plot (figure 15) displays
extreme violations of the assumption of Normal residuals and the homogeneity of variance
assumption may also be violated based on the football-shaped pattern in the Residuals vs.
Fitted plot (figure 14).
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FIGURE 14: Residuals vs Fitted plot for a linear
mixed model including cage as a random effect for
the spleen data.
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FIGURE 15: Normal QQ plot for a linear mixes
model including cage as a random effect for the
spleen data..

There is also the option to ignore the natural ordering of the levels and treat an ordinal
response as nominal. However, not only would the nominal response analysis have less power,
ordinal response models are simpler to interpret with a greater variety of modeling options
including easy access to ordinal mixed models. The CLM described here is the most common
ordinal response model and at a minimum improves upon nominal and quantitative analyses
because the response is treated correctly.

The proportional odds assumption of cumulative link models states that the effect of the
predictors should be independent of the level j of the response. The ability to assess this
assumption was initially a focus of this paper but a lack of assessment tools stymied the
investigation. Harrell (2001) and Ananth and Kleinbaum (1997) mention the existence of
a χ2 Score test of the proportional odds assumption but do not give any details on how to
conduct the test or an interpretation of the results. Harrell (2001) does provide a qualitative
assessment of this assumption via the plots seen throughout this paper. These plots however
do not give a definitive answer as to whether the proportional odds assumption is violated or

17



not. Additionally, these plots are not able to take into account random effects and therefore
may not even be a valid assessment for mixed models. In the future, it would be helpful
to research this Score test more and to try to adjust Harrell’s Hmisc package so that the
summary.formula() function can account for a mixed model.

Finally, with regard to this case study, the sample sizes were relatively small for some
treatments. For example, only 14 mice were subjected to the daily healing touch treatment.
In the liver and spleen, the plots of the data and fitted probabilities appear to show differences
in treatment which indicate reiki may in fact increase the spread of cancer while healing touch
may have helped the mice hold the cancer at bay. The fact that no significant treatment
effect was found for any of the three organs may be the result of such small sample sizes.
This result could also be the product of an unstable model due to few observations within
a cage. Continued research in this area could repeat this experiment with a larger sample
size. The amount of training and practice of the people administering the treatments could
also be of interest in further bio-energy research.
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